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Executive Summary 
 
 
Background and Issues 
 
In accordance with the Chesapeake 2000 Agreement, the Chesapeake Bay Program has recently 
implemented important modifications to (1) ambient water quality criteria for living resources 
and, (2) the procedures to determine attainment of those criteria.  A novel statistical tool for 
attainment, termed the Cumulative Frequency Diagram (CFD) approach, was developed as a 
substantial revision of previous attainment procedures, which relied upon a simple statistical 
summary of observed samples.  The approach was viewed as advantageous in its capacity to 
represent degrees of attainment in both time and space.  In particular, it was recognized that the 
CFD could represent spatial data in a synoptic way:  data that is extensively collected across 
diverse platforms by the Chesapeake Bay Program Water Quality Monitoring Program. Because 
the CFD approach is new to Bay Program applications, underlying statistical properties need to 
be fully established.  Such properties are critical if the CFD approach is to be used to rigorously 
define regional attainments in the Chesapeake Bay.   
 
In Fall 2005, the Chesapeake Bay Program Scientific, Technical and Advisory Committee 
charged our working group to provide review and recommendations on the CFD attainment 
approach. As terms of reference we used guidelines of Best Available Science recently published 
by the American Fisheries Society and the Estuarine Research Federation.  Statistical issues that 
we reviewed included,  
 

1. What are the specific analytical/statistical steps entailed in constructing CFD attainment 
curves and how are CFDs currently implemented? (Section 2) 

2. How rigorous is the spatial interpolation process that feeds into the CFD approach?  
Would alternative spatial modeling procedures (e.g., kriging) substantially improve 
estimation of water quality attainment?  (Section 3) 

3. What are the specific analytical/statistical steps entailed in constructing CFD reference 
curves? (Section 4) 

4. What are the statistical properties of CFD curves?  How does sampling density, levels of 
attainment, and spatial covariance affect the shape of CFD curves?  What procedures are 
reliable for estimating error bounds for CFD curves? (Section 5) 

5. From a statistical viewpoint, does the CFD approach qualify as best available science? 
(Section 6) 

6. What are the most important remaining issues and what course of directed research will 
lead to a more statistically rigorous CFD approach over the next three years?  (Section 7) 

 
The central element of our work was a series of exercises on simulated datasets undertaken by 
Dr. Perry to better evaluate 1) sample densities in time and space, 2) varying levels of 
attainment, and 3) varying degrees of spatial and temporal covariance.  Further, trials of spatial 
modeling on fixed station Chesapeake Bay water quality data by Dr.s Christman and Curriero 
were conducted to begin to evaluate spatial modeling procedures.   These exercises, literature 
review and discussions leading to consensus opinion are the basis of our findings.  In August 
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2006, the working group supplied preliminary findings and related text for use in the 2006 CBP 
Addendum to Ambient Water Quality Criteria that is now under review.   
 
Findings 
 

1. The CFD approach is feasible and efficient in representing water quality 
attainment.  

 
The CFD approach can effectively represent the spatial and temporal dimensions of water 
quality data to support inferences on whether regions within the Chesapeake Bay attain or 
exceed water quality standards.  The CFD approach is innovative but could support 
general application in water quality attainment assessments in the Chesapeake Bay and 
elsewhere. The CFD approach meshes well within the Chesapeake Bay Program’s 
monitoring and assessment approaches, which have important conceptual underpinnings 
(e.g., segments defined by designated uses).  

 
In accepting the CFD as the best available approach for using time-space data, the panel 
contrasted it with the previous method and those sustained by other jurisdictions. The 
previous method used by the Chesapeake Bay Program, similar to the approaches used in 
other states, was simply based on EPA assessment guidance in which all samples in a 
given spatial area were compiled and attainment was assumed as long as > 10% of the 
samples did not exceed the standard. In this past approach all samples were assumed to 
be fully representative of the specified space and time and were simply combined as if 
they were random samples from a uniform population. This approach was necessary at 
the time because the technology was not available for a more rigorous approach. But it 
neglected spatial and temporal patterns that are known to exist in the standards measures. 
The CFD approach was designed to better characterize those spatial and temporal 
patterns and weight samples according to the amount of space or time that they actually 
represent. 

 
2. CFD curves are influenced by sampling density and spatial and temporal 

covariance.  These effects merit additional research.  Conditional simulation offers a 
productive means to further discover underlying statistical properties and to 
construct confidence bounds on CFD curves, but further directed analyses are 
needed to test the feasibility of this modeling approach.   

 
The panel finds that the CFD approach in its current form is feasible, but that additional 
research is needed to further refine and strengthen it as a statistical tool.  The CFD builds 
on important statistical theory related to the cumulative distribution function and as such, 
its statistical properties can be simulated and deduced.  Through conditional simulation 
exercises, we have also shown that it is feasible to construct confidence ellipses that 
support inferences related to threshold curves or other tests of spatial and temporal 
compliance.  Work remains to be done in understanding fundamental properties of how 
the CFD represents likely covariances of attainment in time and space and how temporal 
and spatial correlations interact with sample size effects.  Further, more work is needed in 
analyzing biases across different types of designated use segments.  The panel expects 
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that a two-three year time frame of directed research and development will be required to 
identify and measure these sources of bias and imprecision in support of attainment 
determinations.  

 
3. The success of the CFD-based assessment will be dependent upon decision rules 

related to CFD reference curves.  For valid comparisons, both reference and 
attainment CFDs should be underlain by similar sampling densities and spatial 
covariance structures. 

 
CFD reference curves represent desired segment-designated use water quality outcomes 
and reflect sources of acceptable natural variability.  The reference and attainment curves 
follow the same general approach in derivation: water quality data collection, spatial 
interpolation, comparison to biologically-based water quality criteria, and combination of 
space-time attainment data through a CFD.  Therefore, the biological reference curve 
allows for implementation of threshold uncertainty as long as the reference curve is 
sampled similarly to the attainment curve.  Therefore, we advise that similar sample 
densities are used in the derivation of attainment and reference curves. As this is not 
always feasible, analytical methods are needed in the future to equally weight sampling 
densities between attainment and reference curves.  

 
4. In comparison with the current IDW spatial interpolation method, kriging 

represents a more robust method and was needed in our investigations on how 
spatial covariance affects CFD statistical inferences.  Still, the IDW approach may 
sufficiently represent water quality data in many instances and lead to accurate 
estimation of attainment.  A suggested strategy is to use a mix of IDW and kriging 
dependent upon situations where attainment was grossly exceeded or clearly met 
(IDW) versus more-or-less “borderline” cases (kriging).     

 
The current modeling approach for obtaining predicted attainment values in space is 
Inverse Distance Weighting (IDW), a non-statistical spatial interpolator that uses the 
observed data to calculate a weighted average as a predicted value for each location on 
the prediction grid.  IDW has several advantages. It is a spatial interpolator and in general 
such methods have been shown to provide good prediction maps. In addition, it is easy to 
implement and automate because it does not require any decision points during an 
interpolation session.  IDW also has a major disadvantage – it is not a statistical method 
that can account for sampling error.  
 
Kriging is also a weighted average but first uses the data to estimate the weights to 
provide statistically optimal spatial predictions.  As a recognized class of statistical 
methods with many years of dedicated research into model selection and estimation, 
kriging is designed to permit inferences from sampled data in the presence of uncertainty.  
Thus the quantity and distribution of the sample data are reflected in those inferences.  
Indeed, the panel’s initial trials on the role of spatial sources of error in the CFD have 
depended upon the ability to propagate kriging interpolation uncertainty through the CFD 
process in generating confidence intervals of attainment.  
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In comparison to IDW, kriging is more sophisticated but requires greater expertise in 
implementation.   Kriging is available in commercial statistical software and also in the 
free open source R Statistical Computing Environment, and requires geostatistical 
expertise and programming skills for those software packages.  Segment by segment 
variogram estimation and subsequent procedures would require substantial expert 
supervision and decision-making.  Thus, this approach is not conducive to automation.  
On the other hand, there may be CBP applications where the decision on attainment is 
clearly not influenced to any substantial degree by the method of spatial interpolation.  
One suggested strategy is to use a mix of IDW and kriging - dependent upon situations 
where attainment was grossly exceeded or clearly met (IDW) versus more-or-less 
“borderline” cases (kriging).    
 

5. More intensive spatial and temporal monitoring of water quality will improve the 
CFD approach but will require further investigations on the influence of spatial and 
temporal covariance structures on the shape of the CFD curve.  This issue is 
relevant in bringing 3-dimensional interpolations and continuous monitoring 
streams into the CFD approach.  

 
In the near future, the panel sees that the CFD approach is particularly powerful when 
linked to continuous spatial data streams made available through the cruise-track 
monitoring program, and the promise of continuous temporal data through further 
deployment of remote sensing platforms in the Chesapeake Bay (Chesapeake Bay 
Observing System:  http://www.cbos.org/).  These data sets will support greater precision 
and accuracy in both threshold and attainment determinations made through the CFD 
approach but will require directed investigations into how data covary over different 
intervals of time and space.  Further, there may be important space-time interactions that 
confound the CFD attainment procedure.   
 
Some of the assessments for the Bay such as that for dissolved oxygen require three 
dimensional interpolation, but the field of three dimensional interpolation is not as highly 
developed as that of two dimensional interpolation.  Kriging can be advantageously 
applied in that it can use information from the data to develop direction dependent 
weighted interpolations (anisotropy). Kriging can include covariates like depth.  Options 
for implementing 3-D interpolation include: custom IDW software, custom kriging 
software using GMS routines, or custom kriging software using the R-package.   
 

 
Recommendations 
 

The panel identified critical research tasks that need resolution in the near future.  The following 
is a list of critical aspects of that needed research.  These research tasks appear roughly in order 
of priority.  However, it must be recognized that it is difficult to formulate as set of tasks that can 
proceed with complete independence.   For example, research on task 1 may show that the ability 
to conditionally simulate the water quality surface is critical to resolving the sample size bias 
issue.  This discovery might eliminate IDW as a choice of interpolation under task 3.  The Panel 
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has made significant progress on several of these research tasks and CBP is encouraged to 
implement continued study in a way that maintains the momentum established by our panel.  

  
Task 
 
1. Effects of Sampling Design on CFD Results 

 
(a) Continue simulation work to evaluate CFD bias reduction via conditional simulation. 
(b) Investigate conditional simulation for interpolation methods other than kriging - this may 
      lead to more simulation work. 
(c) Implement and apply interpolation with condition simulation on CBP data. 
 

2. Statistical inference framework for the CFD 
 
(a) Conduct confidence interval coverage experiments. 
(b) Investigate confidence interval methods for non-kriging interpolation methods. 
(c) Implement and evaluate confidence interval procedures. 

 
3. Choice of Interpolation Method 

 
(a) Implement a file system and software utilizing kriging interpolation for CBP data. 
(b) Compare interpolations and CFDs based on kriging and inverse distance weighting (IDW). 
(c) Investigate nonparametric interpolation methods such as LOESS and spline approaches.  
 

4.  Three-Dimensional Interpolation 
 
(a) Implement 2-D kriging in layers to compare to current approach of 2-D IDW in layers. 
(b) Conduct studies of 3-D anisotrophy in CBP data. 
(c) Investigate software for full 3-D interpolation.   
 

5.  High Density Temporal Data 
(a) Develop methods to use these data to improve temporal aspect of CFD implementation. 
(b) Investigate feasibility of 4-Dimensional interpolation. 
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1.  Introduction 

In June 2000, Chesapeake Bay Program (CBP) partners adopted the Chesapeake 2000 agreement 
(http://www.chesapeakebay.net/agreement.htm), a strategic plan that calls for defining the water 
quality conditions necessary to protect aquatic living resources.  These water quality conditions 
are being defined through the development of Chesapeake Bay specific water quality criteria for  
dissolved oxygen, water clarity, and chlorophyll_a to be implemented as state water quality 
standards by 2005.  One element of the newly defined standards is an assessment tool that 
addresses the spatial and temporal variability of these water quality measures in establishing 
compliance.  This tool has become known as the Cumulative Frequency Diagram (CFD). 
 
The (CFD) was first proposed as an assessment tool by Paul Jacobson, of Langhei Ecology 
(www.LangheiEcology.com).  At that time Dr. Jacobson was consulting with the Chesapeake 
Bay Program as a member of the Tidal Monitoring Network Redesign Team.  Within this group, 
the CFD concept gained immediate recognition and support as a novel approach that permitted 
independent modeling of the time and space dimensions of the continuous domain that underlies 
Chesapeake Bay water quality parameters.  In addition, because preparation of the CFD uses 
spatial interpolation, the approach can allow integration of data collected on different spatial 
scales such as fixed station data and cruise track data. 
 
While the benefits of the CFD approach has been  recognized (U.S. EPA 2003) and the the CBP 
has begun implementation of the approach for certain water quality parameters and segments of 
the Chesapeake Bay, investigations of the statistical properties revealed that the underlying shape 
parameters of the CFD were sensitive not only to rates of compliance but also to sampling design 
elements such as sample density.  The novelty of the approach coupled with concerns about its 
statistical validity motivated the Chesapeake Bay Program to request that its Scientific and 
Technical Advisory Committee (http://www.chesapeake.org/stac/) empanel a group with 
expertise in criteria assessment, spatial data interpolation, and statistics to assess the scientific 
defensibility of the CFD.  Here we report the findings of this panel.  
 
The primary goal of this panel is to provide an initial scientific review of the CFD compliance 
approach.  This review addresses a wide range of issues including: bias and statistical rigor, 
uncertainty, practical implementation issues, and formulation of reference curves.  Because of 
the novelty of the CFD approach, the panel has endeavored to research and explain the properties 
of the CFD and spatial modeling upon which the CFD approach depends to provide a basis for 
this evaluation.  These activities are beyond the scope of the typical review.  However, because 
so little is known about the CFD, it was necessary to expand the knowledge base. 
  
The report is organized into 7 sections.  In Section 2 of this report we present the CFD approach 
as a series of steps, each of which needs to be considered carefully in evaluating its statistical 
properties. Spatial interpolation is a critical but the most statistically nuanced step in the CFD 
approach.  Spatial interpolation of water quality data in the CBP has to date received little 
statistical review.  In Section 3 we evaluate alternative geostatistical methods as they pertain to 
the CFD approach. The CFD approach is an attainment procedure, which depends upon 
statistical comparison between attainment and reference curves.  In Section 4, we present 
alternative types of references curves and discuss statistical properties of each.  In Section 5 the 
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statistical properties of CFD curves (applicable to both attainment and reference curves) is 
elucidated through a series of conditional simulation trials. 
 
In addition to this primary charge, the panel is sensitive to the fact that the CFD will be 
employed in the enforcement of water quality standards.  Use as a regulatory tool imposes a  
standard of credibility, which we review in Section 6.  We use here “best available science” and 
“best science” criteria to evaluate the overall validity and feasibility of the CFD approach, 
following guidelines established by the American Fisheries Society and Estuarine Research 
Federation (Sullivan et al. 2006).  These follow other similar criteria (e.g., The Daubert Criteria 
(Daubert v. Merrell Dow Pharmaceuticals, Inc., 1993) and include: 
  
1. A clear statement of objective  
2. A conceptual model, which is a framework for characterizing systems, sating assumptions, 
    making predictions, and testing hypotheses.  
3. A good experimental design and a standardized method for collecting data.  
4. Statistical rigor and sound logic for analysis and interpretation.  
5. Clear documentation of methods, results, and conclusions 
6. Peer review. 
 
The panel has made progress in better understanding statistical properties of the CFD approach 
and overall, we recommend it as a feasible approach and one that qualifies under most criteria 
for best available science.  Still, we believe that our efforts should only represent the beginning 
of a longer term effort to (1) Use simulations and other means to support statistical comparisons 
of CFD curves; and (2) Support the CBP’s efforts to model water quality data with sufficient 
rigor in both spatial and temporal dimensions.  Research and implementation recommendations 
follow in Section 7 
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2.0 Background  
2.1 The CFD assessment approach. 
 
The water quality criteria assessment methodology currently proposed by the E.P.A. Chesapeake 
Bay Program (CBP) involves the use of a Cumulative Frequency Diagram (CFD) curve.  This 
curve is represented in a two dimensional plane of percent time and percent space.  This 
document briefly discusses the reasoning that lead to the development of  this assessment tool.  
The proposed algorithm for estimating the CFD is given and illustrated with small data sets.  
Some properties and unresolved issues regarding the use of the CFD are briefly discussed.  In 
Section 5, simulation studies explore in greater specificity the multiple issues related to error and 
bias in the CFD approach.  
 
Reasoning behind the CFD Approach 
 
The CFD assessment methodology evolved from a need to allow for variability in water quality 
parameters due to unusual events.  For the water quality parameter to be assessed, a threshold 
criterion is established for which it is determined that water quality that exceeds this threshold is 
in a degraded state (For simplicity, we will speak of exceeding the threshold as representing 
degradation, even though for some water quality constituents such as dissolved oxygen, it is 
falling below a threshold that constitutes degradation).  Because all water quality parameters are 
inherently variable in space and time, it is unlikely that a healthy bay will remain below the 
threshold in all places at all times.  In the spatial dimension, there will be small regions that 
persistently exceed the threshold due to poor flushing or other natural conditions.  It is 
recognized by CBP that these small regions of degraded condition should not lead to a degraded 
assessment for the segment surrounding this small region.  Similar logic applies in the temporal 
dimension.  For a short period of time, water quality in a large proportion of a segment may 
exceed the threshold, but if this condition is short lived and the segment quickly returns to a 
healthy state, this does not represent an impairment of the designated use of the segment.  
Recognition that ephemeral exceedances of the threshold in both time and space do not represent 
persistent impairment of the segment leads to an assessment methodology that will allow these 
conditions to be classed as acceptable while conditions of persistent and wide spread impaired 
condition will be flagged as unacceptable.  The assessment methodology should first ask  how 
much of the segment (for simplicity, a spatial assessment unit is called a segment, but more 
detail is given on spatial assessment units in Section 2)  is not in compliance with the criteria 
(percent of space) for every point in time.  In a second step the process should ask how often 
(percent of time) is a segment out of compliance by more than a fixed percent of space.  The 
results from these queries can be presented in graphical form where percent of time is plotted 
against percent of space (Figure 2.1).  It is arbitrary to treat space first and time second.  A 
similar diagram could be obtained by first computing percent noncompliance in time and then 
considering the cumulative distribution of percent time over space. 
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Figure 2.1  Illustration of CFD for 12 dates 

 
If a segment is generally in compliance with the criterion, then one expects a high frequency of 
dates where the percent out of compliance is low.  In this case, the CFD should descend rapidly 
from the upper left corner and pass not too far from the lower left corner and then proceed to the 
lower right corner.  The trace in Figure 2.1 shows the typical hyperbolic shape of the CFD.  The 
closer the CFD passes to the origin (lower left corner), the better the compliance of the segment 
being assessed.  As the CFD moves away from the origin, a higher frequency of large percents of 
space out of compliance is indicated.   
 
 
Formulating an Estimate of the CFD. 
 
The algorithm developed by CBP for estimating the CFD is most easily described as a series of 
steps.  These steps are given in bullet form to provide a frame work for the overall approach.  
The quickly defined framework is followed by a simple example.  This in turn is followed by 
more detailed discussion of each step.   
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The steps: 
 
1.  Collect data from a spatial network of locations on a series of dates in a three year assessment 
period . 
 
2.  For each date, interpolate the data for the entire system (e.g. mainstem bay) to obtain 
estimates of water quality in a grid of interpolation cells. 
 
3.  For each interpolation cell assess whether or not the criterion is exceeded. 
 
4.  For each assessment unit (e.g. segment), compute the percentage of interpolator cells that 
exceed the criterion as an estimate of the percent of area that exceeds the criterion. 
 
5.  Rank the percent of area estimates for the set of all sample days in the assessment period from 
largest to smallest and sequentially assign to these ranked percents a value that estimates percent 
of time. 
 
6.  Plot the paired percent of time and percent of area  data on a graph with percent of area  on 
the abscissa and percent of time on the ordinate.  The resulting curve is the Cumulative 
Frequency Diagram. 
 
7.  Compare the CFD from a segment being assessed to a reference CFD.  If at any point the 
assessment CFD exceeds the reference CFD,  that is, a given level of spatial noncompliance 
occurs more often than is allowed, then the segment is listed as failing to meet it's designated 
use. 
 
Simple Numerical CFD Example: 
 
For this example, assume a segment for which the interpolation grid is 4 cells by 4 cells.  In 
reality, the number of grid cells is much larger.  Also let data be collected on 5 dates.  Typically 
data would be monthly for a total of 36 dates.  Let the criterion threshold for this fictitious water 
quality parameter be 3.  In what follows, you will find an illustration of the steps of computing 
the  CFD for these simplified constraints.  The three columns of the next page show the first 
three steps.   Column 1 shows fictional data for five dates for five fixed locations in a 2 
dimensional grid.  Column 2 shows a fictional interpolation of these data to cover the entire grid.  
Column 3 shows the compliance status of each cell in the grid where 1 indicates noncompliance 
and 0 indicates compliance. 
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Step 1. Collect data at 
known locations. 
 
 
date 1 
3   3 
  5  
    
2   1 
date2 
1   1 
  3  
    
1   1 
date3 
4   2 
  2  
    
1   1 
date4 
1   4 
  2  
    
4   1 
date5 
1   3 
  2  
    
1   1 

Step 2.  Interpolate the data 
to grid cells. 
 
 
date 1 
3 4 5 3 
4 4 5 2 
3 3 4 1 
2 3 3 1 
date2 
1 2 3 1 
2 2 3 2 
1 3 2 1 
1 1 1 1 
date3 
4 3 2 2 
3 2 2 1 
2 2 1 1 
1 1 1 1 
date4 
1 2 3 4 
2 2 2 3 
3 3 2 1 
4 3 1 1 
date5 
1 2 3 3 
2 2 2 2 
1 1 1 1 
1 1 1 1 

Step 3.  Determine 
compliance status of each 
cell. 
 
date 1 
1 1 1 1 
1 1 1 0 
1 1 1 0 
0 1 1 0 
date2 
0 0 1 0 
0 0 1 0 
0 1 0 0 
0 0 0 0 
date3 
1 1 0 0 
1 0 0 0 
0 0 0 0 
0 0 0 0 
date4 
0 0 1 1 
0 0 0 1 
1 1 0 0 
1 1 0 0 
date5 
0 0 1 1 
0 0 0 0 
0 0 0 0 
0 0 0 0 
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Step 4:  Percent compliance by date. 
 
sample date percent 

space 
date 1  75.00% 
date 2  18.75% 
date 3  18.75% 
date 4  43.75% 
date 5  12.50% 
 
Step 5.  Rank the percent of space values and assign percent of time = (100*R/(M+1.0)), 
where R is rank and M is total number of dates. 
 
sample date ranked 

percent 
space 

cumulative 
percent time 

date 1  75.00% 16.67 
date 4  43.75% 33.33 
date 2  18.75% 50.00 
date 3  18.75% 66.67 
date 5  12.50% 83.33 
 
Steps 6 and 7:  The plot of the CFD and the comparison to the reference curve are shown 
in Figure 2.2.  For this hypothetical case the assessment area would be judged in 
noncompliance.  For a percent area of 18.75, the allowable frequency on the reference 
curve is about 53%.  That is, 18.75% of the segment area should not be out of compliance 
more that 53% of the time.  For date 3, the estimated frequency of 18.75% 
noncompliance is 66.67%.  Thus the frequency of 18.75% of space out of compliance is 
in excess of the 53% allowed.  The reference curve is exceeded for dates 4 and 1 as well.  
Note: in this cumulative distribution framework, the actual date is not relevant.  One 
should not infer that noncompliance occurred on that date if the data point associated 
with a date falls above the reference.  Date is being used here as a label for each 
coordinate pair. 
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Figure 2.2 Graphical representation of CFD from the above example (red, '+') with hypothetical 
reference curve (green, smooth). 

 
Defining the CFD Ideal 
 
As defined above, the CFD is a data driven formulation.  But the data used to formulate 
the CFD are a sample of points taken from a population.  Defining the CFD becomes 
complex when one considers the many different levels for which it might be defined.  At 
one level, the CFD might be defined based on the true state of a segment.  Imagine that 
the state of a segment could be frozen for sufficient time to permit deployment of an 
analog sampler (that is one that measures water quality continuously rather than in 
discrete samples) to assess the percent of area out of compliance at that instant.  Now 
stretch that imagination one step further to relax the condition that the segment be frozen 
and allow that these analog measurements of percent of area out of compliance be 
determined continuously in time.  With this information, a determination of the CFD for 
the true state of the segment is possible.  While the information needed to construct the 
ideal CFD is not obtainable, it is important to ask how well the CFD based on obtainable 
data represents this ideal (see also Section 5).  Is a data driven CFD consistent for the 
ideal CFD in the statistical sense?  Loosely speaking, consistency implies that the data 
driven CFD should get closer to the ideal CFD as more data are used.  Is the data driven 
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CFD unbiased for the ideal CFD?  Unbiasedness implies that even with small amounts of 
data, the data driven CFD on average covers the ideal CFD. 
 
One might argue that if both the assessment CFD and the reference CFD are data driven, 
then it is not important for the CFD to approximate the ideal.  Even so, it is important to 
understand the behavior of the CFD as a function of samples size and the relative 
temporal and spatial contributions to the variance in the water quality parameter.  If the 
curve changes shape as a more data are used, this could result in unfair comparisons 
between assessment and reference regions.  In Section 4, statistical properties for both 
types of reference curves are evaluated further. 
 
Defining Reference Curves  
 
Two approaches to defining the reference curve are being considered.  One is a 
biologically based definition.  The idea is to identify appropriate reference regions with 
healthy biological indicators and compute the reference CFD for these regions.  For 
example, healthy benthic IBI scores might be used as indicators of adequate bottom 
dissolved oxygen.  Thus after stratifying by salinity zone and perhaps other factors, a 
series of dissolved oxygen reference CDF curves could be computed from the existing 
20+ year monitoring data base.  When it is not possible to establish a reference condition 
some more arbitrary device must be employed.  Alternatives are discussed in Section 4.0. 
 
Discussion of Each Step 
 
Step 1 - data collection.  One of the advantages of the CFD approach is that it will 
accommodate a variety of input data and still arrive at the same assessment endpoint.  
Data collection methods currently in place include: fix station data, cruise track data, 
continuous monitor data, aircraft flight path data, and satellite imagery data.  Because of 
the interpolation step, all of these data can be used (and potentially combined) with 
varying degrees of success to estimate the total spatial (to the limit of interpolator pixel 
size) distribution of a water quality constituent.  As noted above, one could construct this 
process by  reversing the roles of time and space.  That is, first interpolate over time and 
then build a cumulative distribution in space.   In theory it is an abitrary choice to first  
standardize the data over space by interpolation and then construct the cumulative 
distribution in time.   However, in practice,  there is a greater diversity of sampling 
designs over space and therefore it is the sampling in the spatial dimension more than the 
temporal that creates many types of data that must be forced to a common currency. 
 
Step 2 - interpolation.  Interpolation is the step that puts data collected at various spatial 
intensities on a common footing.  On the one hand, this is advantageous because data 
collected at many spatial intensities are available for the assessment process.  On the 
other hand, it can be misleading to accept interpolated surfaces from different data 
sources as equivalent without qualifying each interpolation with a measure of the 
estimation error that is associated with each type of data.   Clearly an interpolation based 
on hundreds of points per segment (such as cruise track data) will more accurately reflect 
the true noncompliance percent when compared to an interpolation based on two or three 
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points per segment (such a fixed station data).  Of the various types of interpolation 
algorithms available, the method proposed for this assessment is kriging.  Kriging offers 
the best available approach for the estimation error associated with interpolation. 
 
Step 3 - pointwise compliance.  Determining the percent of compliance of each cell 
from each interpolation would seem to be a simple step.  If the estimated value for a cell 
exceeds the criterion then that cell is out of compliance.   
 
While interpolation allows for a standardization of many types of data, pointwise 
compliance allows for standardization of many criteria.  Because compliance is 
determined at points in time and space, it is possible to vary the compliance criteria in 
time and space.  If different levels of a water quality constituent are acceptable in 
different seasons, then the criterion can vary by season.  It is possible to implement 
different criteria over space for  a segment that bridges oligohaline and mesohaline 
salinity regimes.  It would even be possible to let the criterion be a continuous function of 
some ancillary variable such as temperature or salinity.  All that is required is that the 
final determination be yes or no for each interpolator cell. 
  
Even the simplicity of this concept becomes diminished when issues of interpolation 
error are considered.  Consider the assessment of two interpolator cells from an 
interpolation based on cruise track data.  One cell near the cruise track has an estimated 
value is 4 and a standard error of 0.1.  A second cell far from the cruise track has an 
estimated value of 4 and a standard error of 1.0.  If the criterion were 3.0, it is fairly 
certain that the first cell represents exceedance.  It is much less certain that the second 
cell represents exceedance.  In the simple assessment of non-compliance, they count the 
same. 
 
Step 4 - percent non-compliance in space.  Computing a percentage should also be a 
simple step.  The estimate is simply 100 times the number of cells out of compliance 
divided by the total number of cells.  As a rule, the uncertainty of a binary process can be 
modeled using a binomial distribution.  However, the issue of uncertainty described for 
step 3 propagates into computing the percent of compliance for a segment.  Add to that 
the fact that estimated values for interpolator cells have a complex dependence structure 
which rules out a simple binomial model and the rules governing the uncertainty of this 
step are also complex.  The number of interpolator cells, N, is relatively constant and 
under an independent binomial model the variance of the proportion of cells not in 
compliance, p,  would be (p)(1-p)/N.  Intuitively, one expects the variance of p to 
decrease as the number of data points that feeds the interpolation increases.  This 
expectation has been confirmed by simulation, but the mathematical tools for modeling 
this propagation of error are yet to be developed. 
 
Step 5 -  Percent of time.   While the percent of space coordinate of the CFD has simple 
interpretation of the percent of the segment out of compliance on a given date, the percent 
of time coordinate is not simply the percent of time out of compliance at a given point.  
Instead the percent of time coordinate has an interpretation similar to that of a cumulative 
distribution function.  The percent of time coordinate is the percent of time that the 
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associated spatial percent of noncompliance is exceeded.  For example, if the (percent 
space, percent time) coordinates for a point on the CFD are (90,10), one would say that 
the spatial percent of noncompliance is greater than or equal to 90% about 10% of the 
time.   
 
This step is very similar to computing an empirical distribution function which is an 
estimator of a cumulative distribution function.  Because of this similarity, one 
immediately thinks of statistical inference tools associated with empirical distribution 
functions, such as the Kolmogorov-Smirnov, Shapiro-Wilk, Anderson-Darling, or  
Cramer-von Mises, as candidates for inference about the CFD.  These procedures model 
uncertainty as a function of sample size only; in this case the number of sample dates.  
The fact that it does not incorporate the uncertainty discussed the previous steps seems 
unsatisfactory. 
 
A quick review of probability plotting will reveal several methods on estimating the 
percent of time coordinate in step 5.  Formulae found in the literature include: (R/N), (R - 
0.5) / (N - 1). and (R - 0.375) / (N + 0.5), where R is rank and N is sample size.  These 
generally fall in to a family of given by (R - A)/(N - 2A + 1) for various values of A.  
They are approximately equal, but the choice should be fixed for a rule. 
 
 
6.  Plotting the CFD.  Even the plotting of the points is subject to variation, although 
these variations are somewhat minor compared to the larger issue of assessing the 
uncertainty of the assessment curve.   The simple approach used in the figures above is to 
connect the points by line segments.  In the statistical literature, it is more common to use 
a step function.  If the graph represents an empirical distribution function, each horizontal 
line segment is closed on the left and open on the right.  Because the CFD is an inversion 
of an EDF it would be appropriate for these line segments to be closed on the right and 
open on the left. 
 
 
7.  Comparing the Curves.  It is at the point of comparing the assessment curve to the 
reference curve that the issue of uncertainty becomes most important.  From the 
preceding discussion it is clear that uncertainty in the assessment curve is an 
accumulation of uncertainty generated in and propagated through the preceding 6 steps.  
If the reference curve is biologically based, it is derived under the same system of error 
propagation.  Developing the statistical algorithms to quantify this uncertainty is 
challenging. 
 
Even if the uncertainty can be properly quantified, the issue of who gets the benefit of 
doubt due to this uncertainty is a difficult question to resolve.   This is a broad sweeping 
issue regarding uncertainty in the regulatory process, not a problem specific to the CFD 
approach.  None-the-less, it must be dealt with here as well as elsewhere.  One option is 
to require that the assessment curve be significantly above the reference curve to 
establish noncompliance.  This option protects the regulated party from being deemed out 
of compliance due to random effects, but if assessment CFD curves are not accurately 
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determined, it could lead to poor protection of environmental health and designated uses.  
A second option is to require that the assessment curve be significantly below the 
reference curve to establish compliance.  This results in strong protection of the 
environmental resource, but could lead to the regulated party implementing expensive 
management actions that are not necessary.  Some compromise between these extremes is 
needed.  The simplest compromise is to ignore variability and just compare the 
assessment curve to the reference curve.  As long as unbiased estimation is implemented 
for both the assessment curve and the reference curve, this third option will result in 
roughly equal numbers of false positive (declaring noncompliance when in fact 
compliance exists) and false negative (declaring compliance when in fact noncompliance 
exists) results.  This offers a balanced approach, but there is no mechanism to motivate a 
reduction of these false positive and false negative errors 
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2.2 Data Available and Current Methods 
Overview of Types of Data Available 
 
The Chesapeake Bay monitoring program routinely monitors 19 directly measured water 
quality paramenters at 49 stations in the mainstem Bay and 96 stations in the tidal 
tributaries. The Water Quality Monitoring Program began in June 1984 with stations 
sampled once each month during the colder late fall and winter months and twice each 
month in the warmer months. A refinement in 1995 reduced the number of mainstem 
monitoring cruises to 14 per year. "Special" cruises may be added to record unique 
weather events. The collecting organizations coordinate the sampling times of their 
respective stations, so that data for each sampling event, or "cruise", represents a synoptic 
picture of the Bay at that point in time. At each station, a hydrographic profile is made 
(including water temperature, salinity, and dissolved oxygen) at approximately 1 to 2 
meter intervals. Water samples for chemical analysis (e.g., nutrients and chlorophyll) are 
collected at the surface and bottom, and at two additional depths depending on the 
existence and location of a pycnocline (region(s) of density discontinuity in the water 
column). Correlative data on sea state and climate are also collected. 
In addition, Chesapeake Bay Program partner organizations Maryland Department of 
Natural Resources and the Virginia Institute of Marine Science have recently begun 
monitoring using a technology known as data flow. DATAFLOW is a system of 
shipboard water quality probes that measure spatial position, water depth, water 
temperature, salinity, dissolved oxygen, turbidity (clarity of the water), and chlorophyll 
(indicator of plankton concentrations) from a flow-through stream of water collected near 
the water body’s surface. This system allows data to be collected rapidly (approximately 
every 4 seconds) and while the boat is traveling at speeds up to 20 knots.  
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Figure 2.3. Map of the tidal water quality monitoring stations 
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In 2005, the MDDNR Water Quality Mapping Program covered 16 Chesapeake Bay, 
Coastal Bay and Tributary systems. The St. Mary's, Patuxent, West, Rhode, South, 
Middle, Bush, Gunpowder, Chester, Eastern Bay, Miles/Wye, Little Choptank, 
Chicamacomico and Transquaking Rivers will be mapped, as well as Fishing Bay and the 
Maryland Coastal Bays.  In Virginia, dataflow data are available for the Piankatank, 
York, Pamunkey and Mataponi Rivers. 
Beginning in 1990, Chlorophyll-a concentrations were measured over the mainstem 
Chesapeake using aircraft remote sensing. From 1990-1995, the instrument used for this 
study was the Ocean Data Acquisition System (ODAS) which had three radiometers 
measuring water leaving radiance at 460, 490 and 520 nm. In 1996, an additional 
instrument was added, the SeaWiFS Aircraft Simulator (SAS II). SAS II has sensors at 
seen wavebands which improves detection of Chlorophyll in highly turbid areas. Since 
1990, 25-30 flights per year have been made during the most productive times of year. 
The data described above and additional information can be obtained from: 
www.chesapekebay.net mddnr.chesapeakebay.net/eyesonthebay/index.cfm
www2.vims.edu/vecos/ 
 
Description of the current nearest neighbor/IDW interpolator 
 

The current Chesapeake Bay Interpolator is a cell-based interpolator.  Water quality 
predictions for each cell location are computed by averaging the nearest “n” neighboring 
water quality measurements, where “n” is normally 4, but this number is adjustable.  
Each neighbor included in the average is weighted by the inverse of the square of 
Euclidean distance to the prediction cell (IDW).   Cell size in the Chesapeake Bay was 
chosen to be 1km (east- west) x 1km (north-south) x 1m (vertical), with columns of cells 
extending from surface to the bottom of the water column, thus representing the 3-
dimensional volume as a group of equal sized cells extending throughout the volume.  
The tributaries are represented by various sized cells depending on the geometry of the 
tributary, since the narrow upstream portions of the rivers require smaller cells to 
accurately model the river’s dimensions.  This configuration results in a total of 51,839 
cells by depth for the mainstem Chesapeake Bay (segments CB1TF-CB8PH), and a total 
of 238,669 cells by depth for all 77 segments which comprise the mainstem Bay and tidal 
tributaries. 
 
The Chesapeake Bay Interpolator is unique in the way it computes values in 3 
dimensions.  The interpolator code is optimized to compute concentration values, which 
closely reflect the physics of stratified water bodies, such as Chesapeake Bay.  The Bay is 
very shallow compared to its width or length; hence water quality varies much more 
vertically than horizontally.  The Chesapeake Bay Interpolator uses a vertical filter to 
select the vertical range of data that are used in each calculation. For instance, to compute 
a model cell value at 5m deep, monitoring data at 5m deep are preferred. If fewer than n 
(typically 4) monitoring data values are found at the preferred depth, the depth window is 
widened to search up to d (normally +/-2m) meters above and below the preferred depth, 
with the window being widened in 0.5m increments until n monitoring values have been 
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found for the computation.  The smallest acceptable n value is selectable by the user.  If 
fewer than n values are located, a missing value (normally a –9) is calculated for that cell.  
A second search radius filter is implemented to limit the horizontal distance of 
monitoring data from the cell being computed.  Data points outside the radius selected by 
the user (normally 25,000m) are excluded from calculation.  This filter is included so that 
only data that are near the location being interpolated are used. 
 
In this version of the Interpolator, Segment and Region filters have been added.  
Segments are geographic limits for the interpolator model. For instance, the Main Bay is 
composed of 8 segments (CB1TF, CB2OH, …,CB8PH).  The tributaries are composed of 
77 additional segments, using the CBP 2003 segmentation.  These segments divide the 
Bay into geographic areas that have somewhat homogeneous environmental conditions.  
This segmentation also provides a means for reporting results on a segment basis, which 
can show more localized changes compared to the whole Bay ecosystem. 
 
Segment and bathymetry information use by the interpolator is stored in auxiliary files.    
Segment information allows the interpolator to report results on a segment basis which 
can show more localized changes compared to the whole Bay ecosystem.  These segment 
and bathymetry files have been created for the main bay and all of the larger tributaries.  
The CBP segmentation scheme was replicated in these files by partitioning and coding 
the interpolator cells that fall within each segment.  
 
The interpolator also identifies the geographic boundary that limits which monitoring 
station data are included in interpolation for a given segment through a region file. Use of 
data regions ensures that the interpolator does not “reach across land” to obtain data from 
an adjacent river which would give erroneous results.  By using data regions, each 
segment of cells can be computed from their individual subset of monitoring data.  Each 
adjacent data region should overlap by some amount so that there is a continuous 
gradient, and not a seam, across segment boundaries. 
 
Current Implementation of CFD 
 
The Chesapeake Bay Program has initiated implementation of the CFD as an assessment 
tool.  The Criteria Assessment Protocols (CAP) workgroup was formed in the fall of 
2005 to develop detailed procedures for implementing criteria assessment.  This 
workgroup has developed and implemented procedures that use the CFD process and 
conducted a CFD evaluation of dissolved oxygen for many designated assessment units. 
 

The CFD methodology was first applied in the Chesapeake Bay for the most recent 
listing cycle which was completed in the Spring of 2006 and was based on data collected 
over the period 2002 through 2004. CFDs were developed and utilized primarily for the 
dissolved oxygen (DO) open- and deep-water monthly mean criteria because there were 
insufficient data collected to assess the higher-frequency DO criteria components. The 
clarity criteria were not assessed based on the CFD because there were few systems in 
which there was sufficient data for an assessment.  Chlorophyll criteria were not available 
from the Chlorophyll criteria team in time to implement a chlorophyll assessment.   
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In general, the CFD analysis indicated that most of the Bay waters failed one or more of 
the open-water or deep-water DO criteria components. However, there were also many 
tributaries in which all of the DO criteria assessed indicated attainment. Thus in this 
initial application, the CFD method did appear to distinguish between impaired and 
unimpaired  systems in a manner that is consistent with the expectations of the many 
stakeholders in the CAP workgroup.  

In the 2006 application of the assessment methodology, there were many details that 
required resolution in order to fully implement the methodology. Procedures generally 
followed the theoretical description as described in Section 2.1, but some details were 
modified to address unforeseen complications. The following describes some of those 
details.  

In general, data were obtained from the CBP CIMS data base and parameters included 
date, location, depth, salinity, temperature and the water quality parameter being 
assessed. Some State data were also incorporated and those data were obtained directly 
from the relevant State. Once all the data were compiled, they were assigned to a time 
period based on the sample date. Fixed-station data are normally collected during a 
monitoring cruise that covers the entire tidal Chesapeake Bay over several days. 
However, in order to provide a “snapshot” in water quality, the data collected within a 
cruise are assumed to be contemporaneous in order to perform a single spatial 
interpolation. For any data not associated with a cruise, a cruise number is assigned 
representing the closest cruise in time to the collection of each datum. Co-located data 
points in the same cruise were averaged. 

The assessment procedure requires assessment over large areas rather than at points in 
space. Spatial interpolation using the CBP IDW interpolator was performed for each 
water-quality criteria parameter for each cruise. Clarity and surface chlorophyll were 
interpolated in the two horizontal dimensions using inverse distance squared weighting. 
Dissolved oxygen was first linearly interpolated in the vertical dimension within each 
column of data beginning at 0.5 meters and continuing at one meter intervals, not to 
exceed the deepest observation in that column. Each depth was then interpolated 
horizontally using inverse distance squared weighting. Data regions were specified for 
each segment in order to prevent the interpolation algorithm from using data points in 
neighboring tributaries. 

Designated uses in the Chesapeake Bay are defined vertically in order separate stable 
water layers that have differing criteria levels for dissolved oxygen. The surface layer 
(open water) is that layer defined to be above the pycnocline and thus exposed to the 
atmosphere. The middle layer (deep water) is defined to be the layer between the upper 
and lower pycnocline. And the lower layer (deep channel) is defined to be the layer 
below the pycnocline. Given that the pycnocline is dynamic and moves up and down with 
each monitoring cruise, the designated use of each grid cell must also be defined based on 
the available data for each cruise.  

The pycnocline is defined by the water density gradient over depth.  Temperature and 
salinity are used to calculate density, which in turn is used to calculate pycnocline 
boundaries. Density is calculated using the method described in: Algorithms for 
Computation of Fundamental Properties of Seawater (Endorsed by UNESCO/SCOR/ 
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ICES/IAPSO Joint Panel on Oceanographic Tables and Standards and SCOR Working 
Group 51.  Fofonoff, N P; Millard, R C Jr.  UNESCO technical papers in marine science. 
Paris , no. 44, pp. 53. 1983). For each column of temperature and salinity data, the 
existence of the upper and lower pycnocline boundary is determined by looking for the 
shallowest robust vertical change in density of 0.1 kg/m3/m for the upper boundary and 
deepest change of 0.2 kg/m3/m for the lower boundary. To be considered robust, the 
density gradient must not reverse direction at the next measurement and must be 
accompanied by a change in salinity, not just temperature. 

The depths to the upper pycnocline boundary, where detected, and the fraction of the 
water column below the lower boundary are interpolated in two dimensions. If no lower 
boundary was detected the fraction was considered to be zero. The depth to the upper 
pycnocline boundary tends to be stable across horizontal space and so spatial definition 
of that boundary using interpolation generally worked well. However, interpolation of the 
lower boundary is more complicated because the results can conflict with the upper 
boundary definition or with the actual bathymetry of the Bay. As a result, interpolation of 
the lower boundary was performed based on “fraction of water column depth”. In that 
way, the constraints of the upper pycnocline boundary definition and the actual depth 
were imposed and errors related to boundary conflicts were eliminated. 

Assessments were performed based on criteria specific averaging periods. The 
instantaneous assessment for deep channel dissolved oxygen was evaluated using the 
individual cruise interpolations. All monthly assessments were based on monthly 
averages of interpolated data sets. To calculate the monthly averages, each interpolated 
cruise within a month was averaged on a point-by-point basis. Generally, there were 2 
cruises per month in the warmer months and 1 cruise per month in the cooler months. 
Spatial violation rates are calculated for each temporally aggregated interpolation in an 
assessment period.  For example, for a three-year summer open-water dissolved oxygen 
assessment, the twelve monthly average interpolations representing the four summer 
months over three years were used.   
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3.  Protocol for Interpolating Water Quality 
 
The CFD approach uses the proportion of space in attainment in any given month 
estimated using an approach based on a statistical model. The current method uses data 
collected in a specific month at a set of sampling locations within the segment of interest 
to estimate the parameters of the model. The estimated model is then used to interpolate 
likely values at unsampled locations, specifically at a set of prediction locations arranged 
in a grid over the segment. The predictions thus obtained are used to calculate the 
proportion of space in compliance that month. The current estimation procedure for 
obtaining predicted values is Inverse Distance Weighting (IDW), a non-statistical spatial 
interpolator that uses the observed data to calculate a weighted average as a predicted 
value for each location on the prediction grid. The method calculates the weight 
associated with a given observation as the inverse of the square of the distance between 
the prediction location and the observation.  
 
The panel considered several interpolation methods in addition to IDW.  Of these, kriging 
methods emerged as a principal alternative approach for populating the grid of prediction 
locations. Non-parametric methods were also considered.  These include Loess regression 
or cubic spline methods.  These approaches could be advantageous in that they are 
statistical methods that provide levels of error, but panel analyses and deliberations have 
been insufficient to provide definitive statements on this class of methods.  Table 3.2 
which appears in Section 3.3 summarizes our determinations.   
 
3.1 Kriging Overview 
Kriging is a spatial interpolation technique that arose out of the field of geostatistics, a 
subfield of statistics that deals with the analysis of spatial data. Kriging and the field of 
geostatistics has been employed in a wide variety of environmental applications and is 
generally accepted as a method for performing statistically optimal spatial interpolations 
(Cressie 1991, Schabenberger and Gotway 2004, Diggle and Ribeiro 2006). Applications 
of kriging in water related research can be found in (Kitanidis 1997, Wang and Liu 
2005,Ouyang et al. 2006). References on kriging methodology, geostatistics, and their 
related statistical development can be found in (Cressie 1991, Diggle et al. 1998, 
Schabenberger and Gotway 2004, Diggle and Ribeiro 2006). 

Kriging can equivalently be formulated in terms of a general linear regression model 

 Y (s) = β0 + β1 X1(s) · · · + βp Xp(s) + ε(s)  (1) 

with s representing a generic spatial location vector (usually 2-D) assumed to vary 
continuously over some domain of interest, Y(s) the outcome of interest measured at s, 
X1(s), . . . ,Xp(s) potential covariates indexed by location s, and their associated regression 
effects β1, . . . , βp.  Note that covariates must be known at every prediction location.  The 
elements of the spatial vector s can be used as covariates for modeling spatial trends.  On 
the other hand  water quality measures such as salinity which may have a strong 
association with the outcome of interest, is of limited value as a covariate because it is 
not known at all prediction locations.  The uncertainty in this regression relationship is 
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modeled with the random error term ε(s) assumed to have zero mean and constant 
variance. Spatial data like the type sampled in the Chesapeake Bay water-quality criteria 
assessments often exhibit a property known as (positive) spatial dependence, 
observations closer together are more similar than those further away. This property is 
accounted for in model (1) by allowing ε(s) to have a spatial correlation structure. 

Some further specifics on ε (s) are warranted. Common distributional assumptions on 
ε (s) include normality or log-normality, although kriging can be performed based on 
other statistical distributions and data transformations (Christenson et al. 2001). The 
spatial correlation in ε (s) is represented by positive definite functions.  These functions 
can be assumed isotropic where correlation decay depends just on distance, or anisotropic 
where correlation decay depends on distance and direction. Variograms are another 
special type of mathematical function closely related to spatial correlation functions that 
can and are more often used to represent spatial correlation. For purposes here and in 
many kriging applications, variograms and spatial correlation functions provide 
equivalent representations of spatial structure. For consistency in what follows only the 
term variogram will be used in discussions of spatial structure. 

While there is considerable flexibility in implementing the error structure of a kriging 
model, it is possible to generalize somewhat with respect to the error structure of 
Chesapeake Bay water quality data.  Of the three water quality parameters being 
assessed, chlorophyll and clarity measures tend to follow the log-normal distribution and 
dissolved oxygen is reasonably approximated by the normal distribution.  The horizontal 
decay rate of spatial correlation does not tend to be directionally dependent.   Thus if the 
bay is viewed as a composite of horizontal layers, isotropic variograms are appropriate 
for kriging each layer.  In a vertical direction, water quality can change rapidly and thus 
spatial correlation can decay over a short distance.  A 3-D interpolation procedure would 
benefit from use of an anisotropic variogram in order to differentiate the vertical 
correlation decay from the horizontal correlation decay. 

Note, in the literature model (1) is referred to as a universal kriging model. When 
covariates (the X’s) are not considered to influence interpolation of Y the right hand side 
of model (1) contains just the constant term β0  and ε (s).    The resulting model is 
referred to as the ordinary kriging model. When the spatial structure (variogram) for 
model (1) is known, statistically optimal predictions for the variable Y at unsampled 
locations (outside of estimation of possible regression effects) can be derived using 
standard statistical principles. The optimality criteria results in spatial predictions that are 
linear in the data, statistically unbiased, and minimize mean squared prediction error, 
hence referred to as best linear unbiased predictions (BLUPs). The minimized mean 
squared prediction error is also taken as a measure of prediction uncertainty. In practice, 
however, spatial structure of the data is unknown, the estimation of which via the 
variogram function is cornerstone to kriging applications.  

To demonstrate let {y(s1), . . . , y(sn)} represent a set of spatial data, for example a water-
quality parameter such as dissolved oxygen sampled at a set of n spatial locations s1, . . . , 
sn. Assume this data to be a realization of the ordinary kriging version of model (1). The 
first step in kriging is variogram estimation. There are several methods available, method 
of moments and statistical likelihood based being two of the more common, all of which 
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though are based on the sample data {y(s1), . . . , y(sn)}. Without going into detail, this 
process ends with a chosen variogram function and its parameter estimation, describing 
the shape and strength (rate of decay) of spatial correlation. There is also a determination, 
again based on the sampled data, of whether the spatial structure is isotropic or 
anisotropic. The estimated variogram is then assumed known and kriged interpolations 
and their interpolated uncertainty are computationally straight forward to generate at 
numerous locations where data were not observed.  Accounting for uncertainty in 
variogram parameter estimation has commonly been explored using Bayesian methods 
(Diggle and Ribeiro 2006). 

 

3.2 IDW Overview 
 
The inverse distance weighting method that is currently used in the CFD approach has 
already been described. Hence, this section provides a short review of IDW’s technical 
details and a comparison of IDW to alternative interpolation methods.   
 
The IDW method is essentially a deterministic, non-statistical approach to interpolating a 
two or three dimensional space. As a result it lacks statistical rigor so that estimates of the 
prediction errors are not calculable without additional assumptions. Similar to kriging, 
IDW predicts a value (Y ) at an unobserved site, say at location sˆ 0, using a weighted 
average of the N nearest observed neighbors (N specified by the modeler): 
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),( 0 issd  is the Euclidean distance between locations s0 and si, and the denominator of the 

weight is to ensure that the weights sum to 1. The IDW is an exact interpolator in that the 
predicted values for observed locations are the observed values and the maximum and 
minimum values of the interpolated surface can occur only at observed sites.    
   
Recent research has compared IDW to other interpolation techniques, most notably 
variations in kriging (Table 3.1). The authors found that in some cases kriging was at 
least as good an interpolator as IDW and in some instances better. The non-parametric 
techniques (splines and similar methods) were not as precise as kriging and IDW. The 
method used for comparison in virtually all of the research was some variant of cross-
validation, a method where some data are kept aside and not used in the model estimation 
phase and then using the resulting model to predict values for the data kept aside. The 
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predicted and observed values are then compared and a statistic is calculated that 
summarizes the differences between the two sets of values (observed and predicted).   
 
None of these studies used datasets with highly irregular edges such as are found in the 
Chesapeake Bay nor did they use any distance metric other than Euclidean distance. 
Whether one method is preferable to another in these more difficult situations remains 
unexplored.  
 
One final and important issue with IDW is that, as currently used, IDW is a deterministic 
method which makes no assumptions as to the probability distribution of the data being 
interpolated. Hence, it does not allow for estimating prediction errors, i.e. it does not 
allow for the possibility of random variation at interpolation sites. A simple question is 
whether IDW can be recast in the kriging framework given the similarity in prediction 
method (weighted average) and hence can a method be found to estimate prediction 
errors? The short answer is no – the distance function used by IDW, which is an implicit 
assumption about the autocorrelation function in the spatial field, does not meet the 
assumptions required for development of a valid variance-covariance matrix describing 
the spatial covariance. As a result, IDW cannot be modified to take advantage of the 
statistical knowledge that has been developed for geostatistical analyses such as kriging. 
This does not imply that other approaches to estimating prediction error are also not 
possible.   
 
A non-parametric approach for estimating variance was proposed (Tomczak, 1998) in 
which jack-knifing was used to provide error estimates. 95% confidence intervals for the 
mean were calculated and then compared to the actual observed values. Not surprisingly, 
only 65% of the data were captured within their associated confidence interval. The 
method appears to have been misapplied – the jackknifing method as used estimates the 
standard error of the mean assuming independent observations. As a result, the 
confidence interval is not capturing the effect of the spatial dependencies nor is it based 
on the fact that we are predicting a value for the unobserved site rather than estimating a 
mean.  The development described by Tomczak (1998) should be explored further and 
other alternatives such as block bootstrapping for variance estimation as well.  
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Table 3.1. A short list of recent articles comparing the precision of IDW to a subset of 
other possible interpolation methods. 
 
Authors Methods Compared Variables 

Manipulated 
Conclusions 

Kravchenko (2003) Inverse Distance 
Weighting (IDW), 
Ordinary Kriging 
(OK) 

spatial structure and 
sample grid spacing 

IDW better than OK 
unless sample sizes 
were fairly large 

Dille, et al. (2002)  IDW, OK, Minimum 
Surface Curvature 
(MC), Multiquadric 
Radial Basis Function 
(MUL) 

neighborhood size, 
spatial structure, 
power coefficient in 
IDW, sample grid 
spacing, quadrat size 

No interpolator 
appears to be more 
precise than another. 
Sample grid spacing 
and quadrat size were 
deemed more 
important. 

Valley, et al. (2005) IDW, OK, Non-
parametric Detrend + 
Splines  

spatial structure, 
sample size, quadrat 
size 

OK tended to be more 
precise but IDW was 
very similar 

Lloyd (2005) moving window 
Regression (MWR), 
IDW, OK, simple 
kriging with locally 
varying mean (SKlm), 
kriging with external 
drift (KED) 

spatial structure, 
sample size 

KED and OK best 

Reinstorf, et al. 
(2005) 

IDW, OK, KED + 
deterministic 
chemical transport 
models 

single dataset was 
analyzed 

OK best 

Zimmerman, et al. 
(1999) 

2 types of IDW, UK, 
OK  

spatial structure, 
sampling pattern, 
population variance 

UK and OK better 
than IDW  

 
3.3 Non-parametric Interpolation Methods 
 
There are many variations on spatial interpolation in addition to kriging and IDW.  See 
Cressie (1989) for a review.  The committee did not have sufficient time to compare all 
models, but CBP in encouraged to continue this research.  One promising category of 
models are for interpolation based on non-parametric methods that do not rely on 
measuring and accounting for spatial autocorrelation. All of the non-parametric 
approaches would be based on the assumption that the autocorrelation observed in the 
data is due to unobserved explanatory variables and hence alternative modeling 
approaches are not unreasonable. The particular set we mention are the regression type 
analyses with the locational indices (northings, eastings) used as explanatory variables. 
Examples include generalized additive models (Hastie and Tibshirani, 1990), high-order 
polynomials (Kutner, Nachtsheim, Neter, and Li, 2004), splines (Wahba, 1990), and 
locally weighted regression (“loess” or “lowess”, Cleveland and Devlin, 1988). In some 
kriging and IDW methods, large-scale trend is modeled relatively smoothly using 
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locational indices and local smaller-scale variation is modeled using the estimated 
autocorrelation in conjunction with the values of the variable at nearby observed sites. 
The nonparametric methods replace estimation of the local variation based on correlation 
functions with models of the large-scale trend that are less smooth and more responsive 
to the spatial variation in the observed data. A visual demonstration is given in Figure 3.1 
which shows a one-dimensional dataset with Y as the variable to be predicted and X as 
the location along the one dimensional axis. For example, X could be distance from the 
mouth of a river and Y could be chlorophyll a concentration. 
 
 
Figure 3.1. Bivariate fit of Y By X. Straight line is a linear large-scale trend fit (R2 = 
0.19); the moderately wavy line around the straight line is a 6th-order polynomial fit (X 
enters the model as X, X2, X3, …, and X6; R2 = 0.25); and the jagged line is a spline fit 
with a very small bandwidth (neighborhood used in local estimation at each X; R2 = 
0.90).  
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One advantage of these approaches is that each of the methods has extensive statistical 
research into estimation of model parameters as well as standard errors for those 
parameters and for predictions at interpolation sites. Another is that the main modeling 
decisions are related to bandwidth selection or degree order of polynomial to fit. These 
decisions can be automated by developing rules for roughness of fit based on reduction in 
MSE as compared to modeling a straight line (in X). Disadvantages are the same as for 
kriging, all model estimation is data dependent which means that the spatial configuration 
and number of sampling sites has a direct influence on the predictions and their error 
estimates.  In addition, a study done by Laslett (1994) comparing kriging and splines 
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indicated that the two methods are similar in predictive power but for certain sampling 
regimes kriging performs better. We recommend more study since the non-parametric 
approaches would be easier to implement than kriging.      
 
3.3 Comparison of Methods 
 

The following describes some of the benefits and potential limitations of kriging in 
regards to CBP application with some comparisons to the IDW approach towards spatial 
interpolation outlined in the previous section. Nonparametric methods are not sufficiently 
developed to include in this comparison.  A primary benefit of the kriging methodology 
compared to IDW is that it is a statistical technique. As such the field of statistics 
(including kriging) is designed to make inference from sampled data in the presence of 
uncertainty and the quantity and quality of the sample data are reflected in those 
inferences. However, kriging is a less than routine type of statistical analysis and requires 
a certain level of statistical expertise to carry out the process. The short description on 
variogram estimation provided above merely introduces this involved and often 
complicated step.  This requirement for informed decision making limits the degree to 
which kriging can be automated and still maintain its flexibility and optimal properties.  

 

Further issues regarding kriging and CBP applications are listed below. 

• Kriging is flexible in that it is based on an estimate of the strength of spatial 
dependence in the data (variogram). Kriging can consider direction dependent 
weighted interpolations (anisotropy) and can include covariates (universal 
kriging) to potentially influence interpolations, either simple trends in easting and 
northing coordinates or water related measures such as sea surface temperature 
measured by satellite.  

• A key feature of a statistical technique like kriging is that a measure of 
uncertainty (called the kriged prediction variance) is generated along with kriged 
interpolations. Research has been initiated (i.e., conditional simulation) to 
propagate this interpolation uncertainty through the CFD process for generating 
confidence intervals for estimates of attainment. 

• Kriging can be applied in situations where the data are sparse, as in CBP fixed 
station data, or densely sampled, as in CBP shallow water monitoring. Kriged and 
IDW spatial interpolations may very well produce near identical results for these 
two extreme scenarios. However it is the kriging approach that provides a 
statistical model, the uncertainty of which is influenced by the quantity and 
quality of data. Knowledge of interpolation uncertainty is crucial for 
discriminating the improved water quality assessment obtained from densely 
sampled networks relative to sparsely sampled networks. 

 

As alluded to earlier kriging is an advanced statistical technique and like all such 
techniques should be carried out by well trained statistician(s) with experience in spatial 
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or geostatistical methodology and experience analyzing water quality data. Assessing 
model fits (of the variogram and regression model) and kriging accuracy via cross 
validation and/or likelihood based criteria should be employed routinely.   

 

To further exemplify this point consider kriging the densely sampled shallow water 
monitoring data which is generated by the DATAFLOW sampling. In addition to the 
other technical complexities mentioned within, this spatial sampling design may raise 
other issues not immediately recognized by untrained users (Deutsch 1984). 

 

For kriging in CBP applications one potential methodological drawback is the issue of 
non-Euclidean distance (Curriero 2006). Current kriging methodology only allows the 
use of the straight line Euclidean distance as the measure of proximity. However, the 
irregular waterways in the Chesapeake Bay system may very well suggest other non- 
standard measures of distance. For example, the spatial design of the fixed station data 
including those in the Bay mainstem and tidal tributaries. The straight line Euclidean 
distance may very well intersect land particularly in regions containing convoluted 
shorelines. There has been research initiated on this topic (Curriero 2006, Jensen et al. 
2006, Ver Hoef et al. 2007), however, results are not yet ready for universal use.  

 

Three dimensional interpolations (including depth as the third dimension) are potentially 
required for CBP applications. The IDW and kriging methodologies, mathematically 
speaking, certainly extend to three dimensions.  However the rapid change of water 
quality over depth would lead to significant anisotropies in the application three 
dimensional kriging that would complicate this approach far more than the application of 
IDW.   On the other hand, a simplistic implementation of IDW that does not recognize 
the rapid decay of covariance over depth would inappropriately reach across the 
pycnocline when choosing nearest neighbors.  Clearly the special properties of water 
quality in a highly stratified bay require innovation for 3-dimensional interpolations. 
Another approach would be to apply universal kriging where a third dimension (depth) is 
used as a covariate.  The use of depth as an independent variable is motivated by the 
observation that often water quality exhibits a predictable trend over depth as for example 
the trend of DO decreasing with increasing depth.  To include depth as a covariate, model 
(1) would be written as 

Y (s) = $0 + $1Depth(s) + g (s): 

A third approach to interpolation in three dimensions is to implement 2-D interpolation in 
layers.  Note that the IDW interpolator currently implemented by CBP (Section 2.2) 
employs a layered strategy by severely restricting (+/- 2m) the vertical distance that may 
be searched for nearest neighbors.  A similar strategy could be implemented using 2-D 
kriging to interpolate the layers.  Which of these approaches is best suited to 3-D 
interpolation for the bay will depend on the data available and assumptions related to 
vertical structure.   Full 3-D kriging interpolation treats the 3rd dimension as a spatial 
dimension in the error term g (s).   The covariate approach requires that the change over 
depth be a predictable trend.  Interpolation in layers assumes that covariance decays so 
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rapidly over depth that it is adequate to treat the layers as independent entities.  Data 
sufficiency requirements increase for all approaches when considering three dimensional 
interpolations. When data are sparse, again a statistical based approach like kriging 
allows this to be reflected in prediction uncertainty. 

 

In many applications, attainment or lack of attainment will be so extreme that the 
assessment end point is clear even without optimizing the error estimation of the CFD.  In 
these extreme cases, IDW or kriging simplified for automation could be sufficient to 
support the attainment ruling without precise quantification of estimation uncertainty.   
For these cases, the customized IDW algorithm that is currently implemented by CBP 
provides a tool with which to begin testing the CFD assessment procedure, but kriging 
simplified for automation may offer some advantages.  Kriging can be simplified for 
automation by fixing the variogram model to one mathematical form, say exponential, for 
all applications.  With the variogram model fixed, kriging becomes like IDW in assuming 
the same mathematical form for the spatial dependence for all cases, but it is more 
flexible than IDW in that the rate of spatial correlation decay could be allowed to vary 
among applications.  In addition, the simplified kriging opens the door for conditional 
simulation, with potential benefits that are discussed in Section 5.  While a simplified 
kriging algorithm offers some advantages, there are also some potential drawbacks.  
Because variogram estimation typically entails use of an iterative procedure such as 
maximum likelihood or non-linear least squares, there is the potential that lack of 
convergence of these algorithms would be problematic for an automated implementation 
of kriging. 

 

 In terms of computing, IDW is available in commercial GIS software, requiring GIS 
skills for application. Kriging is available in commercial statistical software and also in 
the free open source R Statistical Computing Environment (R Development Core Team 
2005, Ribeiro and Diggle 2001) and requires programming skills for those software 
packages. 

 

In summary, kriging is more sophisticated than IDW, but requires greater expertise 
during implementation to fully exploit its full benefit.  Table 3.2 provides a comparison 
of the capabilities of assessments based simply on: 1) percent of samples, 2) spatial 
interpolation based on IDW and 3) spatial interpolation based on kriging.
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Table 3.2 – Comparison of the capabilities of methods available for interpreting data 
collected for Chesapeake Bay water-quality criteria assessment. 

 

Attributes Sample-based IDW Kriging 
Provides Spatial 
Prediction Yes Yes Yes 
Provides Prediction 
Uncertainty No not routine Yes 
Uncertainty for CFD No No Yes 

Deal with Anisotropy No 
Possible, but 
not routine Yes 

Can Include Cruise 
Track/Fly over No Yes Yes 
Feasibility of 3 
dimensional 
interpolations No Yes 

Possible, but not 
routine 

Feasibility of mainstem-
tributary interpolations No Yes Possible 
Inclusion of covariates to 
improve prediction No No Yes 
Predictions of non-linear 
functions of predicted 
attainment surfaces 
P(y>c) No No Yes 
Level of Sophistication Lowest Low Very High 

Automation Yes Yes 
Possible, but not 

routine 
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4.0  CFD Reference Curves 
 
There are several approaches to defining reference curves that are proposed for use in the 
CFD assessment methodology. One is a biologically based definition and other 
approaches are based on an arbitrary allowable frequency (see Section 2).   Here we 
review these options in greater detail. 
 
4.1. Biological Reference Curves 
 
The idea behind biological reference curves is to identify regions of the Bay that have 
healthy biological indicators and are thus considered to be in attainment of their 
designated use. CFDs would be developed for these areas in the same way that CFDs 
would be developed elsewhere, but those curves developed for healthy areas would be 
considered “reference” curves. For example, healthy benthic IBI scores might be used as 
indicators of adequate bottom dissolved oxygen. 
 
The success of the CFD-based assessment will be dependent upon decision rules related 
to the biological reference curves.  These curves represent desired segment-designated 
use water quality outcomes and reflect sources of acceptable natural variability.  The 
reference and attainment curves follow the same general approach in derivation – water 
quality data collection, spatial interpolation, comparison to biologically-based water 
quality criteria, and combination of space-time attainment data through a CFD.  
Therefore, the biological reference curve allows for implementation of threshold 
uncertainty as long as the reference curve is sampled similarly to the attainment curve. 
Bias and uncertainty are driven in CFD curves by sample densities in time and space.  
Therefore, we advise that similar sample densities are used in the derivation of attainment 
and reference curves. As this is not always feasible, analytical methods are needed in the 
future to equally weight sampling densities between attainment and reference curves.  
 
4.2. CBP Default Reference Curve 
 
In some cases, the development of biologically-based reference curve is not possible due 
to lack of data describing the health of the relevant species. In such cases, a more 
arbitrary approach is required since better information is not available. EPA recommends 
the use of a default curve in cases where a biologically-based one is not available. That 
default curve is defined by these properties: 

1. symmetric about the 1:1 line, 

2. hyperbolic, 

3. total area = 0.1, and 

4. pass through (1,0) and (0,1) 

 

 

 35



(see EPA, 2003; page 174).  The equation that describes this figure is defined by the 
equation: 
(x+b)*(y+b) = a 

 

Where:  b = 0.0429945 

   a = b2 + b 
This reference curve is illustrated in Figure 4.1 by the blue curve. 
 
An alternative default reference curve might be formulated by extending the arbitrary 
allowance of 10% exceedance into the two dimensional framework of the CFD. 
The criterion threshold is a value that should be rarely exceeded by a population at 
healthy levels.  When the population is unidimensional, say concentration in a point 
source effluent, then one can obtain this upper threshold based on the simple distribution 
of values in a healthy population (Figure 4.2).  The ninetieth percentile of this distribution 
might be chosen as the criterion threshold.   Thus in this example, 10% noncompliance is 
allowed because this level of noncompliance is expected in a healthy population.  A 
standard technique for estimating distribution percentiles is to assume a mathematical 
form for the distribution, e.g., the normal distribution, and to estimate the percentile as 
some number of standard deviations above the mean.  The 90th percentile of the normal 
distribution is 1.2815 standard deviations above the mean. 
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Figure 4.2.  Hypothetical lognormal distribution that might be typical of Chlorophyll.  The figure  
illustrates the relation of the geometric mean and the criterion threshold set at the 90th percentile. 

When regulating populations that are distributed in both space and time, this simple 
concept for regulating noncompliance must be extended to account for the variability in 
each dimension.  While there is some added complexity in the mathematics, the 
fundamental concept remains the same:  That is, to set the criterion threshold at a certain 
distance above the mean so that exceedance of that threshold will be rare in a healthy 
population.  In this case, the distance by which the threshold must exceed the mean is a 
function of both the spatial and temporal variance components as described below. 
 
To establish these criteria thresholds for populations with two components of variance,  
assume the simple model:  

Yi(sj) = : + "i + $i(sj) 
 
where: 
  : is the desired mean level of chlorophyll (in log space) 
  "i is a random term for variation over time with variance F2

" , 
  $i(sj) is a random term for variation over space with variance F2

$

  Yi(sj) is a water quality constituent measured at time i and location sj. 
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The variance of xij is F2
" + F2

$ = F2 .  The standard dev of xis is sqrt(F2) = F.  It is 
common to allow an overall 10% exceedance rate without declaring an assessment unit 
out of compliance.  We would expect 10% of the xis to fall above u + 1.2815*F  where 
1.2815 is the 90th percentile of the standard normal distribution.  Thus (assuming 
normality) a population with spatial and temporal variance characterized by F2

"  and F2
$ 

that has a mean that is 1.2815*F below the threshold criterion should have an exceedance 
rate of 10% over space and time.  Note that the reference curve is determined by the ratio 
F2

" /F2
$  and the distance in standard deviations of the mean from the threshold.  The 

actual values of the variance components, the mean, and the threshold, are not important 
as long as the relationships hold.  Thus as long as the variance ratio is consistent, and 
mean to threshold distance is a fixed number of standard deviations, the same reference 
curve will serve for all seasons and regions. 
 
Letting chlorophyll observed in the decade of the 1960's serve as a reference population, 
the parameters in Table 4.1 can be used to construct this reference curve based on the 
variance ratio and the mean to threshold distance given in the table.   The ratio F2

" /F2
$  is 

computed as the ratio of the temporal variance term and the spatial variance term.  The 
mean to threshold distance is computed to be 1.2815F for all regions and seasons.  Based 
on there parameters, a reference curve for chlorophyll can be derived (green curve, figure 
4.1).  For comparison a reference curve based on a variance ratio of 1.0 (red curve, Figure 
4.1) and the standard CBP reference curve (blue curve, Figure 4.1) are also shown.   
 
Table 4.1.  Chlorophyll criteria derived by computing and upper threshold based on 
predicted means for mid-flow1960's chlorphyll data. 
Season Salinity 

Zone 
Mean 
Log(chl) 

GMmean 
(chl) 

Temporal 
Variance 

Spatial 
Variance

Std 
Dev 
log(chl) 

Threshold 
Criterion 
log(chl) 

Threshold 
Criterion 
(chl) 

Spring  OH  0.7684 5.87 0.0233 0.0658 0.2985 1.2594 18.17
Summer  OH  1.1693 14.77 0.0233 0.0658 0.2985 1.6603 45.74
Spring  MH  0.4137 2.59 0.0233 0.0658 0.2985 0.9047 8.03
Summer  MH  0.8626 7.29 0.0233 0.0658 0.2985 1.3536 22.58
Spring  PH  0.1386 1.38 0.0233 0.0658 0.2985 0.6296 4.26
Summer  PH  0.218 1.65 0.0233 0.0658 0.2985 0.709 5.12
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Figure 4.1.  Illustrations of three reference curves:  1) the  standard CBP reference curve derived to 
cover 10% of the percent space by percent time plane (blue); 2)  a reference curve based on 10% 
exceedance frequency and a temporal-spatial variance ratio of 1.0(red); and 3) a reference curve 
based on 10% exceedance frequency and a temporal-spatial variance derived from chlorophyll 
data(green). 

 
Relative to the standard reference curves, the curve based on the observed variance ratio 
for chlorophyll is more restrictive of events where large portions of the population are out 
of compliance.  For example, the CBP standard reference (blue) would allow 40% of area 
to exceed the criterion threshold up to about 6% of the time.  The proposed chlorophyll 
reference curve (green) would restrict occurrences of 40% of area out of compliance to 
about 2% of the time.  Conversely, the proposed curve (green) allows a higher frequency 
of events where a small percentage of space in out of compliance.  For example, 10% of 
space is allowed out of compliance 36% of the time under the proposed curve and 27% of 
the time under the standard curve. 
 
While there is mathematical and statistical logic underpinning this proposed chlorophyll 
reference curve, it is important to remember that it is based on parametric models and 
simplifying assumptions.  It is recommended that validation exercises be performed to 
insure that the general shape of CFD curves generated from data collected in near 
reference conditions is approximated by the proposed curve. 
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4.3 Accommodating Seasonality in Reference Curves 
 
The degree of acceptable exceedance can vary with season.  For example, benthos are 
less tolerant of hypoxia in warmer water temperatures.  In addition, the threshold 
criterion may never be exceeded in some seasons and frequently be exceeded in others.  
By combining seasons, the acuteness of a specific seasonal exceedence is diluted by data 
from the acceptable season(s).  To some extent, seasonal differences can be 
accommodated by changing the threshold criterion among seasons.  However, there may 
still be a need to develop separate reference curves by season. 
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5.0   Review CFD Statistical Properties Including Bias, Precision, and 
Inference. 
 
The CFD as an assessment tool is a relatively new and unstudied concept.  Its close 
relationship to the empirical distribution function does give some insight on the 
mathematical behavior of the CFD.  In this section we review some of the properties of 
the CFD and discuss the complications that arise from these properties when the CFD is 
used as an assessment tool.  After defining the population which determines the CFD, we 
go on to discuss the currently proposed sampling and estimation scheme, sources of error 
in the estimation scheme, and problems that result from these.  The goal is to succinctly 
define these problems and elucidate possible solutions. This section will cover:  the 
behavior of the CFD as a function of temporal and spatial variance, methods for 
construction CFD reference curves, the influence of sampling and estimation variance on 
the CFD shape, and feasible methods for developing statistical inference tools. 
 
 
5.1 Review of CFD Properties 
 
With any statistical application, it is important to distinguish between the true descriptive 
model underlying the population being sampled and the estimate of this model derived 
from the data collected in a sample.  As described above, the CFD has a data driven 
definition where the CFD is constructed based on a sample from a population for some 
water quality parameter.  This population is a continuous random process over space and 
time.   
 
In order to quantify the statistical properties of the CFD, the CFD is defined in terms of a 
population of experimental units.  This approach is a discrete approximation of the 
continuous random process in both time and space.  However, the estimation scheme 
involves interpolation to discrete units in a spatial dimension and discrete days in the 
temporal dimension.  To facilitate an understanding of the relation of the estimator to the 
true population, it seems reasonable to use a discrete approximation as the model for the 
true population.   
 
 
5.2 Defining the CFD Ideal 
 
The population will be defined as having different sizes of experimental units in much the 
way we think of a population that gives rise to a nested design or repeated measures 
design.  The Chesapeake Bay will be partitioned into segments.  Assessment will be done 
for each segment based on a three year record of the segment.  Thus a three year period 
for the segment defines the entire population that will be partitioned into experimental 
units.  The continuous time dimension is partitioned into days to form the primary units  
which are the state of a segment for a day.  Call this a Segment-Day.  Let there be M 
segment-days in the assessment period (typically 3 x 365).  The continuous spatial 
dimension is partitioned into N 3-dimensional cells (may range from hundreds to 
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thousands).  The state of each cell for a day will be a unit nested within the segment-day.  
The attribute of interest will be a measure of water quality for each cell for a day.  
Examples might be the mean level of Chlorophyll-a in the cell for one day or the 
minimum of dissolved oxygen in the cell during the day.  Let Y be a random variable for 
the attribute of interest and consider the following model 
 

Yi(sj) = : + "i + $i(sj)     Eqn 5.1.1.1 
 
the vector " will be assumed to have expectation 0 and variance Σ" and 
each vector $i will be assumed to have expectation 0 and variance Σ$i.
i is the ordinal index for days and 
s is a vector valued ordinal for spatial location. 
 
Under this model, Σ" defines the correlation over time at the segment-day level and Σ$i 
defines correlation over space that occurs cell to cell within a day. 
 
Let C i(sj) be a collection of threshold limits that define the acceptable criterion for the 
measured attribute.  If Y i(sj) exceeds C i(sj) in a cell, that cell is called degraded.  The 
criterion is allowed to vary in both time and space so that in theory each Y i(sj) might be 
compared to a unique C i(sj)..    It may vary over time because different levels of Y may 
be acceptable in different seasons.  It may vary over space because different levels of Y 
may be acceptable in different salinity regimes so that even within a segment, C may be a 
function of salinity.  As a rule, it is anticipated that C i(sj)  will be constant for regions of 
space and time such as salinity zones and seasons. 
 
Now convert the measured attribute Y i(sj) to a Boolean response as follows  
 
TY i(sj) = I(Y i(sj) > C i(sj))  = 1 if Y i(sj) > C i(sj)   Eqn 5.1.1.2 
    = 0 otherwise 
 
Thus TY takes the value 1 when Y exceeds the threshold defined by C.  Using TY, we 
summarize the state of a segment on one day as the fraction of that segment that is out of 
compliance 

∑ == N
1j jii )(sTY) (1/NP       Eqn 5.1.1.3 

 
The CFD that we wish to estimate is one minus the cumulative distribution function of 
the Pi's.  If  P(i) represents the ordered values of the Pi's for any assessment period, then let  
 

        
  Eqn 5.1.1.4

 ∑ =
≥= M

1i (i) p)  I(P(1/M)  G(p)  

 
G defines the CFD that if it were known would be used for an exact assessment.  The 
cumulative distribution function is determined by the mean and variance of the ideal 
population.  This population is defined with a spatial variance component and a temporal 
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variance component.  The final CFD shows the cumulative percent of time that a certain 
percent of space is below the criterion threshold.  If the CFD shows that water quality in a 
segment is beyond the threshold for too much space and too much time, then the segment 
is classified as impaired. 
 
For one assessment period, G can be considered exact as defined above, but recognize 
that even this is only one observation of the many possible observations of G that could 
result from sampling different assessment periods. 
 
Assume for simplicity that Y is normal.  If Σ" were 0 so that Y had constant expectation 
over time and if Σ$  were of the form σ2I then each cell on each day would have constant 
probability of exceeding a constant value of C given by 1 - Φ(C) where Φ is the normal 
cumulative density function.  In this greatly simplified scenario, Pi would be the outcome 
of N independent Bernoulli trials.  The ideal CFD would be the cumulative distribution 
function of M outcomes of a binomial random variable with N trials.  If we allow Σ$ to 
have positive off diagonal elements, then the Bernoulli trials become dependent (i.e. 
adjacent cells are more likely to either both exceed or both meet the standard than distant 
cells).  This should make the distribution of the Pi more variable than under the 
independent binomial model, but the expectation of Pi would be constant over time.  If 
we relax the assumption that  Σ" is 0, then the expectation of the Pi would vary over time 
which would increase the variability of the Pi even more.   
 
Under the simplifying assumptions of independence, constant mean, and constant 
variance, it is possible to obtain an analytical formulation for the CFD based on the 
parameters of Eqn 5.1.1.1.  However, when the more realistic time dependent, space 
dependent model with seasonal nonstationarity is considered, an analytical formulation is 
not tractable.  The lack of an analytical formulation for this estimator under realistic 
dependence assumptions, e.g. non-trivial Σ" and Σ$, points toward computer intensive 
simulation techniques to develop statistical inference procedures for this problem.  None-
the-less, it is interesting to consider the behavior of the CFD under the simplified model. 
 
5.3 CFD Behavior under a Simplified Model 
 
In what follows, the behavior of the CFD under various parameter formulations for 
Equation 5.1.1.1 are presented in graphical form.  There are four parameters involved: 
µ the population mean,  σt the temporal variance, σs  the spatial variance, and C the 
criterion threshold.  In the examples that follow, three of these parameters are held 
constant and the fourth is varied to illustrate the effect of the varied parameter. 
 
In this exercise, the parameters of Equation 5.1.1.1 are simplified as follows: 
 Σ"  =  σt I   and    Σ$  =  σs I,  where I is the identity matrix.  Thus in both the temporal 
and spatial dimensions, independence and constant variance is assumed. 
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Example 1.  Example 1 considers the effect of changing the population mean on the 
shape of the CFD.   
 
 Table 5.1.  Parameter values and color key for the family of curves shown in Figure 
5.1. 

µ σt σs c color 
curve 

number 
5 1 1 5 Red 1 
4 1 1 5 Orange 2 
3 1 1 5 Brown 3 
2 1 1 5 Green 4 
1 1 1 5 Blue 5 

 
igure 5.1.  A family of curves illustrating the behavior of the CFD as the 

alues for 

ote that when the population mean is equal to the criterion threshold, the CFD is a 
ct of 

old, we 

noncompliance 50% of the time. 

F
population mean decreases from the criterion threshold.  The parameter v
each curve and the corresponding color are given in the following Table 5.1 
 
N
diagonal line from upper left to lower right (Figure 5.1, red).  This is largely an artifa
using symmetric distributions, the normal, for both the time and space variance 
components.  That is, when the population median is equal to the criterion thresh
expect an average of 50% noncompliance over time and we expect the exceed 50% 

 44



 
As the overall population mean decreases from the criterion threshold, the family of 
urves tends to move from the diagonal line toward the lower left corner.  Thus a 

n 
tance 

line.  

c
reference population, which should have a small probability of exceeding the criterio
threshold might have a shape similar to the green curve.  This illustrates the impor
of the shape of the CFD in measuring compliance.  A CFD from a highly compliant 
population will tend to hug to lower left corner similar to the blue and green curves.  As 
the population mean approaches the criterion threshold, the CFD approaches the red 
If the population mean were to exceed the criterion threshold, the CFD would tend 
toward the upper right corner. 
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Example 2.  Example 2 considers the effect of changing the temporal variance on the 
shape of the CFD.   Note that the population mean is held constant at 3 which 
corresponds to the yellow curve of the preceding example. 
 
Table 5.2.  Parameter values and color key for the family of curves shown in Figure 
5.2.  

µ σt σs c color 
curve 

number 
3 1 1 5 Red 1 
3 2 1 5 Orange 2 
3 3 1 5 Brown 3 
3 4 1 5 Green 4 
3 5 1 5 Blue 5 

 

 
Figure 5.2.  A family of curves illustrating the behavior of the CFD as the temporal 
population variance increases.  The parameter values for each curve and the 
corresponding color are given in Table 5.2.  Note that the red curve here has the 
same parameters as the yellow curve of Figure 5.2. 
 
As temporal variance increases, the frequency of large proportions of space going out of 
compliance increases (Figure 5.2, lower right).  Conversely, the frequency of small 
proportions of space out of compliance (i.e. large proportions of space being in 
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compliance) decreases (Figure 5.2., upper left).  That is, shifting the daily mean either 
down or up tends to shift the entire segment toward or away from compliance. 
 
In preparing water clarity CFDs for reference areas defined by having successful SAV 
beds,  it is not unusual to find a curve shape similar to Figure 5.2 orange or yellow 
curves.  This pattern suggests that SAV is tolerant of ephemeral events of spatially broad 
degraded water clarity.  If water clarity is persistently degraded over portions of the area, 
SAV may be impaired. 
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Example 3.  Example 3 considers the effect of changing the spatial variance on the shape 
of the CFD.   Again the population mean is held constant at 3 which corresponds to the 
yellow curve of the first example. 
 
Table 5.3.  Parameter values and color key for the family of curves shown in Figure 
5.3.  

µ σt σs c color 
curve 

number 
3 1 1 5 Red 1 
3 1 2 5 Orange 2 
3 1 3 5 Brown 3 
3 1 4 5 Green 4 
3 1 5 5 Blue 5 

 

 
Figure 5.3.  A family of curves illustrating the behavior of the CFD as the spatial 
population variance increases.  The parameter values for each curve and the 
corresponding color are given in Table 5.3.  
 
Increasing the spatial variance results in a family of curves that is complementary to  
those that follow an increase in temporal variance.  Increasing spatial variance results in a 
higher frequency of small proportions being out of compliance.  It is not so much an all-
or-nothing phenomenon.
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Example 4.  Example 4 considers the effect of changing both temporal and spatial 
variance on the shape of the CFD.    
 
Table 5.4.  Parameter values and color key for the family of curves shown in Figure 
5.4.  

µ σt σs c color 
curve 

number 
3 1 1 5 Red 1 
3 2 2 5 Orange 2 
3 3 3 5 Brown 3 
3 4 4 5 Green 4 
3 5 5 5 Blue 5 

 

 
 
Figure 5.4.  A family of curves illustrating the behavior of the CFD as both temporal 
and spatial variance increases.  The parameter values for each curve and the 
corresponding color are given in Table 5.4. 
 
Increasing the spatial and temporal variance together has the opposite effect of decreasing 
the population mean.  The CFD tends to move in a direction of noncompliance.  Thus 
compliance as measured by the CFD depends on the relative values of the population 
mean, the temporal and spatial variance, and the criterion threshold.  Increasing the 
population mean has the same effect as decreasing the criterion threshold.  Increasing 
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population variance has the same effect as increasing the mean or decreasing the criterion 
threshold.  In a sense, the CFD is measuring the distance between the population mean 
and the criterion threshold in units of variance analogous to a simple t-test.  A nuance 
introduced here that has no analogy in the t-test is that the ratio of spatial to temporal 
variance controls the symmetry of the curve.   
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5.4 Uncertainty and Bias 
 
In Section 5.1., it was shown that the shape of the CFD is a critical element to 
determining compliance.  Thus it is important that this shape be primarily determined by 
the state of compliance of a segment and not be influenced by factors not relating to the 
status of compliance.  Because the CFD is constructed based on data that are a sample 
from the whole, it is clear that some uncertainty in the CFD will result.  In addition, the 
CFD is a function of the empirical distribution function (EDF) of fraction of space in 
compliance. The shape of this EDF is determined by the mean and variance of the 
sample.  Thus any factor, such as sample size, that affects the precision of the fraction of 
space estimate, will affect the shape of the CFD.  In this section we review the effect of 
noncompliance factors on the shape of the CFD. 
 
Sample Size and Shape 
 
As noted, because the CFD is a function of the EDF of estimates of "fraction of space", 
any factor affecting the precision of the estimate of fraction of space in exceedance will 
affect the shape of the CFD.  In particular, the number of samples used for each p-hat (% 
exceedence) will affect precision.  For a given segment, this fraction will be estimated 
more accurately if twelve samples are used to form the interpolated surface rather than 
six.  Because of unknown spatial dependence in the data, it is difficult to analytically 
quantify the magnitude of this sample size effect.  Therefore simulation analysis was 
employed to address this issue. 
 
Numerous simulation tests were performed.  These begin with a simulation of structurally 
simple data that have no temporal or seasonal trend and progress to simulated data that 
mimic the temporal and spatial structure of observed data.  Because the results from this 
latter simulation are most relevant, these are the results that are presented and discussed. 
 
Simulation Experiment 
 
Simulated data were created to mimic the properties of surface chlorophyll in the 
Patuxent estuary.    Data were created to fill a 5 by 60 cell grid which approximates the 
long and thin nature of an estuary.  These data have mean zero and a spatial variance-
covariance structure chosen to approximate the spatial variance-covariance structure of 
cruise-track chlorophyll observed in the Patuxent estuary.  Thirty six grids of data were 
simulated to represent 36 months in a three year assessment period.  The temporal and 
spatial trends were added to the simulated data by adding in means computed for each 
month and river kilometer during the period Jan 1, 1991to Dec 31, 1993.  Simulated data 
were created using the "grf" function of the Geostatistical Package "geoR" of the R-
package. 
 
After the full population of data was simulated for 3 year assessment period, a sampling 
experiment was conducted to assess the effect of sample size on the shape of the CFD.  
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First, as a benchmark, a CFD was computed using all of the simulated data.  To simulate 
the effect of sampling, a sample of fixed size was randomly selected from each the 36 
5x60 grids of data.  Using these samples, kriging (krige.conv function of geoR) was used 
to populate each monthly grid with estimates.  These estimated chlorophyll surfaces were 
used to compute an estimate of the CFD which was graphically compared to the 
benchmark (Figure 5.5).  For a fixed sample size, the process was repeated until it was 
clear whether the differences between the benchmark CFD and the estimated CFDs were 
due to variance or bias.  To assess the effect of sample size, the process was repeated for 
several sample sizes. 
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Figure 5.5  Illustration of the effect of sample size (n) on the shape of the CFD for 
sample sizes 10, 20, 40, and 80. 
 
 
The effect of sample size on the shape of the CFD is consistent with expectations based 
on the relation of the CFD to the empirical distribution function (Figure 5.5).  As sample 
size decreases, the variance of the estimated values of fraction of space increases.  This 
increase in variance results in the estimated CFD being to the left of the true curve for 
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low values of fraction of space and to the right of the true curve for high values of 
fraction of space.  This assessment has been repeated many times, varying the threshold 
criterion, systematic vs. random sampling, the level of variability in the simulated data, 
and so on.  This sample size effect persists for every case where realistic estimation is 
employed. 
 
Sampling Scale and Shape 
 
As shown above (Figures 5.2-5.4) the shape of the CFD is a function of the ratio of 
temporal and spatial variance.  To the extent that the ratio of these variance components 
in the data represent the true state of nature, this is acceptable.  However, under a model 
with strong spatial and temporal dependence, the ratio of these variance components 
might be influenced by the scale of sampling in the spatial and temporal dimensions.  For 
example, samples collected far apart in time might reflect higher variance than samples 
collected close in time.  If the ratio of temporal and spatial variance is influenced by the 
density of sampling in each dimension, then experimental design will have an effect on 
the asymmetry of the CFD estimate.   
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5.5 Confidence Bounds and Statistical Inference 
 
An investigation into the use of conditional simulation to obtain confidence bounds for 
the CFD showed that not only is this a promising technique for statistical inference, but 
also has potential in correcting bias associated with sample size effects that has been 
identified as a central problem in implementing the CFD approach.  Correcting the bias 
of the CFD due to the sample size effect is important in obtaining confidence bounds on 
the CFD that cover the true CFD for a segment.  Because bias correction is an important 
first step, this aspect of the conditional simulation experiments will be discussed first.  
Conditional simulation will then be evaluated in its efficacy in obtaining confidence 
intervals. 
 
This section first outlines the basic concept of conditional simulation and provides an 
algorithm that employs conditional simulation to estimate confidence bounds for the 
CFD.  The results of this experiment support the potential of conditional simulation for 
correcting the sample size bias.  A heuristic discussion of the mechanism underlying this 
adjustment for sample size effect is presented with the hope of motivating additional 
analytical investigation of this effect.   
 
Conditional simulation (Journel, 1974; Gotway, 1994) is a geostastical term for 
simulating a population conditional on information observed in a sample.  In the case of 
kriging, a sample from a spatial population is used to estimate the variogram and mean 
for the population.  The conditional simulation procedure generates a field of simulated 
values conditioned on the estimated mean and variogram from the sample.   To the extent 
that the estimated mean and variogram approximate the true mean and variogram and the 
assumed distribution is a reasonable model for the true distribution, repeated simulations 
of this virtual population will represent the variability typical of the true population.  It 
follows that statistics computed from the conditionally simulated fields will represent the 
expected variability of statistics from the true distribution.  The CFD is a graphical 
representation of ordered statistics of percent compliance over time and it is a reasonable 
to assume that repeated conditional simulations will lead to effective confidence bounds 
for the CFD. 
 
Conditional Simulation Methods 
 
In the computation of the CFD, conditional simulation is implemented at the interpolation 
step for each month.  Interpolation produces an estimate of the spatial surface of the 
target parameter.  From that estimate of the surface is obtained an estimate of the percent 
of noncompliance.  Using conditional simulation, the surface can be reconstructed 1000 
times.  From the 1000 simulated surfaces are computed 1000 estimates of the proportion 
of noncompliance.  When this is repeated for each month for say 36 months, the result is 
an array of 1000 sets of 36 values of the proportion of noncompliance.  Each of the 1000 
sets of 36 can then be ranked from largest to smallest to compute a CFD in the usual way 
which results in 1000 CFD estimates.  The variability among these 1000 CFDs can be 
used to estimate confidence intervals. 
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To evaluate this concept, the following simulation experiment was conducted 
 
1)  The first step is to simulate a population that will be considered the "true" population 
for this exercise. A grid of dimensions 5x60 is populated using an exponential spatial 
variance model with variogram parameters set to (0.00625026, 2.67393446).  These 
variogram parameters were estimated from Patuxent cruise track chlorophyll data.  This 
grid is populated 36 times to represent 36 months.  The mean and variogram are held 
constant for the 36 simulations to create a simplistic case with no seasonal or spatial 
trend.  Using this set of data, the CFD is computed in the usual way and this is considered 
the "true" CFD. 
 
2) A sample of size 40 is selected from each of the 36 simulations at random locations on 
the grid.  Ordinary kriging is used to estimate the spatial surface for each simulation and 
from these 36 estimates of the monthly spatial surfaces, a CFD is computed.  This is 
called the 'estimated' CFD. 
 
3)  For each of the kriged monthly surfaces, 1000 conditional surfaces are simulated 
based upon the mean and variogram estimated from the sample data.   The Cholesky 
decomposition is used to reconstruct the covariance structure indicated by the estimated 
variogram.  The conditionally simulated surfaces were processed to yield 1000 estimates 
of the proportion of noncompliance.  The 1000x36 noncompliance values are used to 
compute 1000 CFDs, which are called the population of "conditionally simulated" CFDs.  
 
4)  Each "rank position" of the monthly ordered proportions of noncompliance has 1000 
values in this simulated population.  To assess variability in the simulated population, 
graphs of the miniumum, the 2.5th  percentile, the 50th percentile, the 97.5th percentile, 
and the maximum at each rank position are plotted to illustrate a 95% confidence envelop 
for the CFD (Figure 5.6). 
 
To test this procedure under various conditions, this basic simulation exercise was 
repeated varying the sample size and adding temporal and spatial trend to the simulation 
of the "true" population to reflect conditions more similar to real populations.  
 
 
Conditional Simulation Results 
 
The results of this simulation exercise are presented graphically.  In Figure 5..1 the black 
line represents the CFD computed for the true population computed from the original 
data.  The red line is the estimated CFD computed from kriging estimates based on 
samples from the true population.  The brown lines represent the min and max of the 
1000 conditionally simulated CFDs.  The green lines represent the 2.5 and 97.5 
percentiles of the 1000 conditionally simulated CFDs, which is the proposed 95 percent 
confidence interval.  The blue curve is the median of the 1000 CFD curves. 
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Bias Assessment 
 
The results in Figure 5.6 are unusual in several respects.  First note that the red curve 
shows the typical sample size bias for the CFD as described above (n=40).  Relative to 
the true CFD (black) the estimated CFD is below the black line for half the curve and 
above the black line for the remainder.  The first unusual feature is that the distribution of 
the conditionally simulated CFD curves is not centered on estimated CFD.  In fact the 
estimated CFD is not completely within the bounds (min, max) of the conditionally 
simulated population.  A surprising feature is that the median of the simulated population 
tracks fairly well with the true CFD (black).  It is clear that the simulated CFD population 
is estimating something other than what is estimated by the estimated CFD (red).  At the 
same time, it appears that the median of the simulated population is a good estimator of 
the true CFD and  the proposed confidence bands (green) is reasonable confidence 
envelop about the true CFD. 
 
What follows is a heuristic explanation for why CFD computed from conditional 
simulations might be a better estimator of the true CFD than a CFD computed from the 
kriging estimator.  Additional analyses test whether this property might hold in general or 
is an artifact of the simple conditions (no spatial or temporal trend) under which this 
experiment  was performed. 
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Figure 5.6.  Confidence bounds computed based on quantiles of fraction of space computed on 
conditionally simulated surface estimates using variogram estimates from data.  The base simulation 
has spatial correlation and no spatial or temporal trend.  Sample size is 40. 
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In prior discussions we have noted that the CFD is the inverse of the CDF of the 
population of p's where p is fraction of space out of compliance with the criterion 
threshold.  It is the variance of the p's that determines the steepness of the CFD: the 
smaller the variance, the steeper the CFD.  In real applications, estimates of the p's have 
two important variance components.  One variance component comes from true variance 
over time in the parameter being assessed.  Another variance component comes from 
imperfect estimates due to sampling variability.  In the base simulation with no spatial or 
temporal trend in the data, it is this second source of variance that controls the shape of 
the CFD. 
 
Because the variance of the p's is critical to the shape of the CFD, consider the variance 
of p's computed from three sources in the experiment outlined above:  1) the true data, 2) 
a krig estimate based on a sample from the true data, and 3) conditionally simulated data 
based on a krig estimate of 2).  To enhance our understanding of this comparison, the 
variance of the p's are discussed for two cases for each source.  The first case assumes 
complete independence in the base simulation and does not use interpolation to estimate 
proportion of area out of compliance.  This simplification allows us to easily infer the 
behavior of the CFD using analytical methods.  The second case introduces an unknown 
spatial dependence in the base simulation and uses interpolated data to estimate the 
proportion of area out of compliance.  These additional complexities make it difficult to 
implement analytical inference but conclusions may still be inferred by analogy to the 
simple independent case. 
 
Consider the sequence of sources where the base simulations are generated under the 
simple constraints of constant mean, constant variance and the errors for each cell of the 
grid that are independent.  For this case the exceedance probability is:  
 

)/)((x - 1  p s σµ C−−Φ=  
 
where :  C is the criterion threshold, 
   is the data at location s, sx
  µ  is the mean used in the simulation, 
  σ  is the variance used in the simulation, and 
   is the standard normal Cumulative Distribution Function. Φ
 
The distribution of the true p's computed from all 300 cells of the 5x60 simulation grid 
would behave like that of a independent binomial with N=300 with a variance of (p(1-
p)/300).  From these independent data draw a sample of size 40.  Using only the 
proportion of the sample that is out of compliance to estimate the p's,  the distribution of 
the p's would be  that of a independent binomial with N = 40 and variance (p(1-p)/40).  
Clearly the p's estimated from the sample of 40 have much larger variance than p's from 
the base simulation with 300 cells.  Thus the true CFD computed using data from 300 
cells will be steeper than the sample CFD computed from 40 data points.  This pattern is 
illustrated by comparing the true CFD (black curve) and the estimated CFD (red curve) in 
Figure 5..1.  This increase in the variance of the p's due to small sample size is the kernel 
of the sample size problem with the CFD.  Now consider the behavior of p's computed 
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from conditional simulations based on the sample.  Compute x  and s as estimates of 3 
and 9  from the sample of 40 in the usual way.  The conditional simulation is done by 
populating the 5x60 grid with data from a normal distribution with mean x i and variance 
s2

i.  The exceedance probability for these simulated data for the ith  month is  
 
 

)C)/s -- (xs(1' s iii xp Φ−=
 
where :  xss is simulated data at location s 
  x i is the estimated mean used in the conditional simulation, and 
  si is the estimated standard deviation used in the conditional simulation. 
 
If the p' were constant over months, the variance of the p's estimated by conditional 
simulation would be (p'(1-p')/300).   The sample size component of this variance has been 
standardized to 300 which is the same as the sample size component of the true p's, but 
the variability of conditionally simulated p's will be greater than that of true p's because 
estimates of x i  and s2

i  will vary over months.    The parameter p and it's estimate p' will 
be close if x  and s are close to  3 and 9.  In the simple case with constant mean and 
independent errors, the CFD estimated by conditional simulation will better approximate 
the true CFD because both are based on binomial distributions with the same N and 
approximately the same p.   
 
Now consider the same sequence of distributions where the assumption of independence 
is relaxed and interpolation of the data is used to estimate the proportion of 
noncompliance.  The introduction of spatial covariance in the base simulation changes 
distribution of the true p's to a dependent binomial.  The dependent binomial will have 
variance similar to an independent binomial with N < 300. Sample size that approximates 
the variance of the dependent binomial is termed Nb.  The variance of the p's estimated 
from spatially dependent data is approximated by (p(1-p)/Nb) where Nb < 300 and thus 
the CFD from the independent case will be steeper than from the dependent case.  The 
degree to which Nb is less than N will depend on the strength of the spatial correlation.   
 
Next consider the effect of dependent data and interpolation on the distribution of the p's.  
When we interpolate the sample of 40 onto the grid of 300, the interpolated surface is 
smooth relative to the original data (compare green and red in Figure 5.2).  Because of 
this increased dependence in the krig estimates,  the estimates of p computed from the 
interpolated data behave more like binomial data with N=Ns (the sample size) than like 
binomial data with N=Nb (the number of grid cells).  Because Ns is smaller than Nb, the 
variance of the population of p's computed from interpolated data will be greater.   The 
greater variance explains why the red line in Figure 5.1 is much flatter than the black line.  
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Figure 5.7.  Simulated chlorophyll data, kriging estimates based on a sample of the 
simulated data, and conditionally simulated data where the simulation is 
conditioned on the data used obtain the kriging estimates. 
 
Finally consider the effect of conditional simulation on the distribution of the p's.  When 
data are conditionally simulated and the mean and variogram estimated from the sampled 
data are accurate, then the character of the simulated data will be similar to that of the 
true data (compare the green and blue in Figure 5.7).  Like the simple independent case, 
the population of p's computed from the conditionally simulated data will have a 
binomial variance that is similar to a binomial with sample size Nb.  The simulation 
experiment shows that the CFD computed from these conditionally simulated p's will 
have a shape similar to the true CFD.  This effect is illustrated in Figure 5.6 where the 
median of the conditionally simulated CFDs (blue line) is more similar to the true CFD 
(black line) than is the CFD estimate based on kriging (red line).  Additional analytical 
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work is needed to formalize the heuristic concepts presented here, but this finding 
indicates a productive direction in developing statistical inference procedures in the CFD 
approach.  
 
Confidence Intervals 
 
The most successful technique for computing confidence bounds for the CFD were 
obtained using conditional simulation based on kriging interpolation of the sample data.  
The 95% confidence bands (green lines, Figure 5.6) are well centered over the true CFD 
(black line) for the simplistic case where the true data have spatial dependence but no 
spatial or temporal trends.  When these simplistic assumptions are relaxed (Figure 5.8) 
and the true data are simulated to have spatial dependence and temporal and spatial trends 
similar to chlorophyll data from the Patuxent estuary, the confidence bands cover the true 
CFD in this case as well.  Experiments that varied the sample size also produced 
confidence bands with good coverage. 
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Figure 5.8.  Confidence bounds based on quantiles of fraction of space computed on 
conditionally simulated surface estimates using variogram estimates from data.  The 
base simulation has spatial and temporal trend estimated from Patuxent data.  
Sample size is 40 
 
Additional evaluation of the confidence band procedure should include a series of 
confidence band coverage experiments to assess the true coverage rate in comparison to 
the nominal coverage rate (e.g. 95% in this example).  This series of experiments should 
be conducted with simulated data where the simulations are designed to produce data 
with properties similar to the three primary assessment water quality parameters. 
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6.0 Findings – Scientific Acceptance of CFD Compliance Approach  
 
6.1.      CFD Approach as Best Available Science 
 
This report represents an initial expert review of the CFD compliance approach.  In 
addition the panel undertook simulation tests on the effects of 1) sample densities in time 
and space, 2) varying levels of attainment, and 3) varying degrees of spatial and temporal 
covariance.  Further, trials of spatial modeling on fixed station Chesapeake Bay water 
quality data were conducted to begin to evaluate spatial modeling procedures. Based 
upon review of underlying theory, initial statistical assessments, and implementation 
feasibility, the panel finds that the CFD approach currently represents best available 
science in its application to water quality attainment determinations in the Chesapeake 
Bay.  Using criteria for Best Science and Best Available Science developed by the  
American Fisheries Society and the Estuarine Research Federation (Sullivan et al. 2006), 
we list relevant attributes of the CFD approach (Table 6.1).    
 
The CFD builds on important statistical theory related to the cumulative distribution 
function and as such, its statistical properties can be simulated and deduced.  We have 
also shown that it is feasible to construct confidence ellipses that support inferences 
related to threshold curves or other tests of spatial and temporal compliance.  Work 
remains to be done in understanding fundamental properties of how the CFD represents 
likely covariances of attainment in time and space and how temporal and spatial 
correlations interact with sample size effects.  Further, more work is needed in analyzing 
biases across regions and designated use segments.  The panel expects that a two-three 
year time frame of directed research and development will be required to identify and 
measure these sources of bias and imprecision in support of attainment determinations.  
 
Through simulations of the CFD approach, it is feasible to analyze bias and error for both 
temporal and spatial sources of attainment variability.  In particular, conditional 
simulations merit additional investigation as a relatively unbiased approach for 
supporting statistical comparisons among CFD curves.  Much work remains to be done in 
understanding fundamental properties of how the CFD represents likely covariances of 
attainment in time and space. Still, the panel finds the approach feasible: one which 
merits additional development, testing, and application.  Indeed, the CFD approach is 
beginning to attract scientific and management attention outside the Chesapeake Bay 
community.    
 
As shown by analyses in previous sections, the approach can efficiently combine spatial 
and temporal data to support inferences on whether regions within the Chesapeake Bay 
attain or exceed water quality standards.  On the other hand, we recognize substantial bias 
and imprecision can occur due to small sample size, non-independence in temporal 
trends, and inadequate spatial interpolations.  More work is needed in analyzing these 
biases across regions and designated use segments.  Further, the old saw of needing more 
samples cannot be ignored.   In particular, the panel is optimistic in the application of 
continuous spatial data streams made available through the cruise-track monitoring 
program, and the promise of continuous temporal data through further deployment of 
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remote sensing platforms in the Chesapeake Bay (CBOS web site, etc).  These data sets 
will support greater precision and accuracy in both threshold and attainment 
determinations made through the CFD approach. 
 
In classifying the CFD approach as best available science, we seek to make several 
important distinctions (Table 6.1).  First, the CFD approach is a scientifically based 
approach based upon its clear purpose, conceptual and design framework, empirical 
procedures, documentation, and intent to develop rigorous statistical and review 
procedures (Sullivan et al. 2006, Daubert v. Merrell Dow Pharmaceuticals, Inc., 1993).   
That the approach permits evaluation of uncertainty also supports its classification as best 
available science (Christman 2006).  On the other hand, we do not believe that the CFD 
approach yet constitutes best science.  Here, further analyses of underlying statistical 
properties of the approach (including sampling design and interpolation elements) and 
vetting by outside experts is needed.  Indeed, although the CFD approach is beginning to 
get featured in scientific venues, it has not yet been reviewed as part of the scientific 
literature.  The panel sees this as an overdue next step for necessary for its acceptance, 
further development, evaluation, and application.   
 
The panel contrasted the CFD approach with existing state and jurisdictional water 
quality criteria and attainment procedures that are based strictly upon the observed 
sample, where site selection is not based upon probability sampling, inferences are not 
based upon error structure, and monitoring does not involve a scientifically rational 
design. Indeed, standard practice for assessing compliance with water quality criteria 
throughout the US is to sample monthly at a fixed set of stations and make judgments 
about compliance strictly from those samples. Sampling stations are typically located for 
convenience (e.g., bridge overpasses), there is reluctance to re-evaluate and change 
location (so as to maintain a time series at a fixed point), and no consideration is given to 
representativeness of the sample for the space/time not sampled. Thus the previous 
method used by the Chesapeake Bay Program, similar to the approaches used in other 
states, was simply based on EPA assessment guidance in which all samples in a given 
spatial area were compiled and attainment was assumed as long as > 10% of the samples 
did not exceed the standard. In this past approach all samples were assumed to be fully 
representative of the specified space and time and were simply combined as if they were 
random samples from a uniform population. This approach was necessary at the time 
because the technology was not available for a more rigorous approach. But it neglected 
spatial and temporal patterns that are known to exist in the standards measures. The CFD 
approach was designed to better characterize those spatial and temporal patterns and 
weight samples according to the amount of space or time that they actually represent. 
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Table 6.1. Evaluation of CFD approach as Best Science or Best Available Science 
according to AFS/ERF “Defining and Implementing Best Available Science for Fisheries 
and Environmental Science, Policy, and Management” (Sullivan et al. 2006). 
Attribute Best 

Science 
Best 
Available 
Science 

Current State of Development of CFD 
Approach 

Clear Objective YES YES Using biological response standards, combine 
available water quality in time and space to determine 
levels of attainment of Bay segments. 

Conceptual 
Model 

YES YES 1. Bay divided into functional classifications – 
“Designated Uses.” 

2. Reference curves establish biologically 
relevant threshold levels for attainment. 

3. CFD combines and weights equally temporal 
and spatial sources of water quality 
variability.  

Experimental 
Design 

NO YES 1. Bay segments are quasi-stratified for water 
quality data collection. 

2. Stratification of water quality data by 
designated units does not yet occur. 

3. Seasonal assessment of water quality 
attainment through spatial interpolation and 
the CFD approach is feasible but incompletely 
developed. 

Statistical Rigor NO YES 1. Procedures for quantifying uncertainty 
associated with sampling design, spatial 
interpolation and CFD approach are feasible 
but incompletely developed. 

2. Procedures for interpolating water quality data 
are feasible but incompletely developed, 
particularly for 3-D interpolations of 
dissolved oxygen. 

3. Procedures for testing inferences related to the 
CFD curve are feasible but incompletely 
developed. 

Clear 
Documentation 

YES YES CFD approach, water quality sampling design, and 
current interpolation procedures well documented in 
Chesapeake Bay Program Reports and on website. 

Peer Review NO YES 1. CFD approach and sampling design upon 
which it is based has not been peer-reviewed 
in the scientific literature.  

2. This report comprises the first external review 
by scientists with statistical expertise.   

3. Grey literature reports produced by CBP 
received expert and stakeholder input. 
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6.2 The CFD approach and peer review 
 
The panel views the CFD approach as innovative, one that has general application in 
water quality attainment assessments, but scientific acceptance of the approach will 
require that it is subjected to more extensive and targeted peer-review in the scientific 
literature. Because the CFD is a regulatory tool, it is particularly important that the 
approach is effectively communicated to the scientific community at large, for general 
acceptance but more critically for the sustained research and development that the CFD, 
as a nascent approach, requires.  As highlighted elsewhere,  bias and imprecision that can 
occur due to small sample densities, non-independence in temporal trends, and 
inadequate spatial interpolations.  Such work is novel and should elicit interest among 
biostatisticians as it addresses questions of both fundamental and applied consequence.   
 
Although, continued working groups, involvement through STAC of expert 
biostatisticians, and related reports such as this one will remain important in scientific 
acceptance of the CFD approach, the panel recommends immediate attention in 
subjecting the CFD to traditional peer review. One or several review papers should be 
submitted by CFD principals that lay out the theory, general approach and lists emergent 
scientific issues to stimulate other scientists to begin to address such issues.   Several 
such papers might be appropriate given potential interest by biostatisticians and 
environmental and regulatory scientists.  Scientific interest will also be garnered by 
public and stakeholder interest.  The CFD approach here presents a challenge as it is 
complex in explanation.  Still with careful diagrams and examples, a brochure on the 
CFD approach should be extremely useful in getting uninitiated scientists and 
stakeholders on the same page.   
 
6.3. Biological Reference Curves 
 
The success of the CFD-based assessment will be dependent upon decision rules related 
to the biological reference curves.  These curves represent desired segment-designated 
use water quality outcomes and reflect sources of acceptable natural variability.  The 
reference and attainment curves follow the same general approach in derivation – water 
quality data collection, spatial interpolation, comparison to biologically-based water 
quality criteria, and combination of space-time attainment data through a CFD.  
Therefore, the biological reference curve allows for implementation of threshold 
uncertainty as long as the reference curve is sampled similarly to the attainment curve. 
Bias and uncertainty are driven in CFD curves by sample densities in time and space.  
Therefore, we advise that similar sample densities are used in the derivation of attainment 
and reference curves. As this is not always feasible, analytical methods are needed in the 
future to equally weight sampling densities between attainment and reference curves.  
 
Conceptually, the CFD approach builds on the underlying view that water quality criteria 
are surrogates for Designated Uses (regions that define ecosystem function).  Implicit is a 
bottom up model based upon eutrophication, which is expected to diminish the 
designated use.  Reference curves represent thresholds related to the functioning of 
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designated use regions.  Therefore, choice of reference regions or periods and sampling 
design in developing reference curve is critical to the implementation of a scientifically-
rigorous CFD approach.   Choice of such regions is beyond the scope of this review, but 
we emphasize several relevant statistical issues in developing reference curves in Section 
4.   
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7.0 Recommendations for Future Evaluation and Refinement of the 
CFD Assessment Methodology 
As part of its conclusions, the STAC CFD Review Panel identified critical remaining 
issues that need resolution in the near future.  The following is a list of critical aspects of 
that needed research.  These research tasks appear roughly in order of priority.  However, 
it must be recognized that it is difficult to formulate as set of tasks that can proceed with 
complete independence.   For example, research on task 1 may show that the ability to 
conditionally simulate the water quality surface is critical to resolving the sample size 
bias issue.  This discovery might eliminate IDW as a choice of interpolation under task 3.  
The Panel has made significant progress on several of these research tasks and CBP is 
encouraged to implement continued study in a way that maintains the momentum 
established by this research group (Table 7.1.).  

1. Effects of Sampling Design on CFD Results - The CFD is a special case of 
an unbiased estimator for a cumulative distribution function of a population. Like 
the cumulative distribution function, the CFD is a function of the mean and the 
variance of the population being assessed. And the better the mean and variance 
are characterized with sample data, the more accurate the shape of the CFD will 
be. As the sampling density increases, the estimated CFD begins to approach the 
true CFD. However, if the sampling density is low, then sampling error could 
become important and there is potential that it could affect the shape of the CFD 
and ultimately the accuracy of the compliance assessment. Furthermore the 
potential for the sample size to affect the shape could create a compliance 
assessment bias if the reference curve and assessment curve are based on different 
sampling densities. Conditional simulation methods developed by STAC panel 
members showed promise toward resolving these issues and mitigating potential 
biases caused by differences in sample size. 

2. Statistical inference framework for the CFD -  It is important in a 
regulatory process to differentiate an exceedance that is small and might have 
resulted from chance variability from those that are large and indicative of an 
inherent problem.  This differentiation will require mathematical tools to quantify 
the variability in the CFD that occurs as a result of sampling.  The STAC panel 
made progress on this issue by demonstrating a confidence interval procedure 
based on conditional simulation associated with kriging.  It remains to be assessed 
whether or not confidence intervals produced by this algorithm perform at the 
nominal level of coverage,  fore example, does a nominally 95% CFD confidence 
interval cover the true CFD 95% of the time. 

3. Choice of Interpolation Method - The STAC panel considered several 
interpolation methods and outlined the features of each. Those features illustrate 
tradeoffs between ease of implementation and maximizing the information 
garnered from the data. Further work is needed to compare the features to the 
requirements of wide-scale implementation of assessment procedures and 
formulate a plan for tractable implementation that results in credible assessments. 
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One strategy is to implement easily performed analysis (e.g. IDW) as a screening 
tool to identify cases where compliance / non-compliance is clear, and then 
implement more labor intensive methods (e.g. kriging) for cases where 
compliance is more difficult to resolve.  One difficulty with implementing a full 
comparison of methods is that implementation of each method requires 
considerable work in terms of setting up file systems, interfacing software and 
data, and coupling the considerable bathymetry data of the bay.  Thus it would be 
prudent to narrow the choices based on theoretical considerations where possible.   

4. Three-Dimensional Interpolation - Assessments of the dissolved oxygen 
criteria require three-dimensional interpolation. However, the field of three-
dimensional interpolation is not as highly developed as that of two-dimensional 
interpolation.  While the mathematics of each method extend easily to three 
dimensions, there are relatively few examples of 3-D interpolation available in the 
literature and issues such as data density requirements for reliable results are not 
well studied.  Efforts are needed to further evaluate research in three-dimensional 
interpolation and seek additional outside scientific input and review with the goal 
of implementing the best available technology for this aspect of criteria 
assessment.  One of the first efforts under this task is a study of the 3-D variance 
stucture of the data to be interpolated.  A short term option is to implement the 
optimal 2-D interpolator in layers as is done with the current IDW interpolator. 

5. High Density Temporal Data - As currently formulated, assessment for 
most of the open-waters of the Bay are based on “snapshots” in time of the spatial 
extent of criteria exceedence estimated via interpolation. Data collected for use in 
interpolation are actually spaced over multiple days due to the large expanse over 
which sampling must be conducted. It is clear that technology is becoming 
available that will produce high density data in both space and time. Interpolation 
should accommodate data that are collected densely in space. However, it is 
unclear how the CFD process will accommodate data that are high density in 
time. Further work is needed to evaluate methods to fully utilize the temporally 
intensive data that is currently being collected. 

 

The panel discussed several mechanisms for the CBP to make progress on challenging 
tasks ahead (Table 7.1).  We recommend that a review panel oversee the tasks over the 
next 3-5 year time frame.  This panel would periodically review trials and other products 
conducted by individual external scientists (academic scientists or consultants) and 
existing teams of CBP scientists (e.g., the Criteria Assessment Protocols (CAP) 
workgroup).  Tasks 1 and 2 are most immediate and critical and we recommend that these 
tasks by contracted out to external scientists, exploiting state-of-the-art approaches and 
knowledge.  Task 3 could be conducted through CAP or other group of CBP scientists.  
Task 4 and 5 are less immediate but again will require substantial expertise and 
innovation and may be most efficiently accomplished by scientific expertise outside the 
immediate CBP community.    
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Table 7.1.  Research Tasks, examples of specific subtasks, and suggested time frame 
for continued CFD research. 
Task Schedule 
1. Effects of Sampling Design on CFD Results 

 
(a) Continue simulation work to evaluate CFD bias reduction 

via conditional simulation. 
(b) Investigate conditional simulation for interpolation 

methods other than kriging - this may lead to more simulation work. 
(c) Implement and apply interpolation with condition 

simulation on CBP data. 

2006-2008 

2. Statistical inference framework for the CFD 
 
(a) Implement and evaluate confidence interval procedures.  
(b) Conduct confidence interval coverage experiments. 
(c) Investigate confidence interval methods for non-kriging 

interpolation methods. 
(c) Implement and evaluate confidence interval procedures.  

2006-2008 

3. Choice of Interpolation Method 
 
 (a) continue to investigate other more nonparametric 

interpolation methods (e.g. loess and splines). 
(b) implement a file system and software utilizing the “best”  

interpolation for CBP data. 
(b) compare interpolations and CFD's based on IDW and 

“best” method. 
 

2006-2008 

4. Three-Dimensional Interpolation 
 
(a) Implement 2-D kriging in layers to compare to current 

approach of 2-D IDW in layers. 
(b) Conduct studies of 3-D anisotrophy in CBP data. 
(c) Investigate software for full 3-D interpolation.  Examples 

of options include:  custom IDW software, custom kriging software 
using GMS routines, custom kriging software using the R-package, or 
some other off the shelf product. 

2007-2009 

5. High Density Temporal Data 
 

(a) Develop methods to use these data to improve temporal 
aspect of CFD in current implementation. 

(b) Investigate feasibility of 4-dimensional interpolation. 

2008-2010 
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