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Natural resource management is plagued with uncertainty of many kinds, but not all uncertainties are
equally important to resolve. The promise of adaptive management is that learning in the short-term will
improve management in the long-term; that promise is best kept if the focus of learning is on those
uncertainties that most impede achievement of management objectives. In this context, an existing tool
of decision analysis, the expected value of perfect information (EVPI), is particularly valuable in identify-
ing the most important uncertainties. Expert elicitation can be used to develop preliminary predictions of
management response under a series of hypotheses, as well as prior weights for those hypotheses, and
the EVPI can be used to determine how much management could improve if uncertainty was resolved.
These methods were applied to management of whooping cranes (Grus americana), an endangered migra-
tory bird that is being reintroduced in several places in North America. The Eastern Migratory Population
of whooping cranes had exhibited almost no successful reproduction through 2009. Several dozen
hypotheses can be advanced to explain this failure, and many of them lead to very different management
responses. An expert panel articulated the hypotheses, provided prior weights for them, developed
potential management strategies, and made predictions about the response of the population to each
strategy under each hypothesis. Multi-criteria decision analysis identified a preferred strategy in the face
of uncertainty, and analysis of the expected value of information identified how informative each strategy
could be. These results provide the foundation for design of an adaptive management program.

Published by Elsevier Ltd.
1. Introduction

Natural resource management is inevitably an exercise in deci-
sion-making under uncertainty. Natural systems are often com-
plex, difficult to observe, highly variable, and understudied, so
decisions about them are plagued by uncertainty about how the
systems will respond to management actions. No wonder, then,
that the concept of adaptive management has seemed like such a
beacon, promising to improve long-term management outcomes
by taking advantage of learning in the short-term. From its formu-
lation in the field of fisheries in the 1970s (Walters, 1986), adaptive
management has become a widely-cited principle of natural re-
source management, with applications in waterfowl harvest man-
agement (Nichols et al., 2007), invasive species management (Shea
et al., 2002, 2005), translocation of threatened species (Rout et al.,
Ltd.
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2009), sustainable forestry (Wintle and Lindenmayer, 2008), reveg-
etation (McCarthy and Possingham, 2007), and many other fields.

Applications of adaptive management emphasize the impor-
tance of uncertainty, and the literature includes several taxono-
mies of uncertainty (Morgan and Henrion, 1990; Regan et al.,
2002). Of particular interest is epistemic uncertainty, structural
and parametric uncertainty in models that arises due to our incom-
plete knowledge about how the system works and responds to
management actions. Epistemic uncertainty can be an impediment
to decision-making, but it is theoretically reducible through appro-
priate monitoring or research. Herein lies the promise of adaptive
management—by addressing epistemic uncertainty in the short-
term, we can improve management outcomes in the long-term.

But which uncertainty should we address? Knowing that episte-
mic uncertainty should be the focus of adaptive management is not
enough. There is much we do not know about how ecological sys-
tems work, but not all of these uncertainties are important to re-
solve. How do we know where to invest monitoring and
research? Here is where the application of adaptive management
has been weak; often, some uncertainty will be identified and an
argument will be made that it needs to be reduced, but no careful
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analysis is undertaken a priori to document the importance of
reducing this uncertainty, and no comparative analysis of other
sources of uncertainty is made. The risks in being lax in our appli-
cations of adaptive management are several: it can lead to unfo-
cused monitoring, where investment is made in reducing many
sources of uncertainty, without regard for the expected return on
that investment; it can lead to unimportant and possibly costly
experimental management, when probing actions are taken in an
effort to reduce uncertainty; and it can undermine support for
adaptive management, both in specific and general application,
by investing scarce resources poorly and failing to noticeably im-
prove management outcomes over time.

There are two key properties of the uncertainty that is impor-
tant in adaptive management: it affects which management action
is preferred, and it can be reduced through monitoring. In the face
of important uncertainty, we do not know which action to take, be-
cause a different action is preferred under one hypothesis or an-
other, or under one set of parameter values or another, and if we
take the wrong action, our expected performance will be lower.
Conversely, there are uncertainties that do not affect which man-
agement action is preferred. They may affect the expected perfor-
mance, but we would take no different action if the uncertainty
were resolved. In the language of classical decision theory, impor-
tant uncertainty has a high expected value of information (Raiffa
and Schlaifer, 1961). Important uncertainty also can be reduced
through monitoring, with or without probing actions designed to
accelerate learning. In some cases, uncertainty might be valuable
to resolve, but we might not have the monitoring ability or enough
resources to substantially reduce it.

The focus of this paper is on using the concept of expected value
of information to identify uncertainty that is relevant in an appli-
cation of adaptive management. After developing this concept
more formally, we apply it to a case study involving the Eastern
Migratory Population of whooping cranes (Grus americana).

1.1. Expected value of information

In classical decision theory, the value of new information is the
difference between the expected value of an optimal action after
the new information has been collected and the expected value
of an optimal action before the new information has been collected
(Raiffa and Schlaifer, 1961). The central concept is expressed in the
expected value of perfect information (EVPI),

EVPI ¼ Es½maxaUða; sÞ� �maxaEs½Uða; sÞ� ð1Þ

where a is an action taken, s represents a model of the system (a
hypothesis about how the system works), and U(a, s) is the utility
associated with taking action a under model s (Raiffa and Schlaifer,
1961; Yokota and Thompson, 2004), where utility is the value as-
cribed by the decision-maker to the outcome, and is thus the mea-
sure of management performance. The first term in Eq. (1)
represents the expected value once the uncertainty has been re-
solved, because the optimal action is chosen after knowing which
model best describes the system (the expected value over the set
of models s is needed in the calculation because prior to resolving
the uncertainty, the decision-maker does not know which model
will be identified). The second term in Eq. (1) represents the ex-
pected value in the face of uncertainty, because the optimal action
is chosen without knowing which model best describes the system,
thus, the decision-maker takes the expectation over uncertainty be-
fore choosing the optimal action. The difference in the terms, EVPI,
is the expected improvement in management performance (mea-
sured on the scale of U) due to acquiring perfect information.

Calculation of EVPI requires articulation of alternative models of
system behavior (these might be discrete models or a continuous set
of alternative models described by parameter values), prediction
of the outcome (U) of each action under each model, and a
priori weights on the alternative models (that is, a probability
distribution for uncertainty). While it might seem daunting to pro-
vide these elements, they are required already for quantitative
application of adaptive management, and represent, in some sense,
due diligence in describing the decision-maker’s knowledge, and
its limitations, about the system under management (Walters,
1986).

The expected value of perfect information is a powerful and
useful tool, because it measures how important information is to
improved management performance, that is, it measures informa-
tion from the standpoint of the decision-maker. In economic appli-
cations, where the utility can be expressed in dollars or some other
currency, the expected value of perfect information can be inter-
preted as the maximum amount a decision-maker would be will-
ing to pay to acquire the information; this concept can be very
valuable in evaluating whether it is worth establishing a monitor-
ing program or funding a research study. In applications where the
outcome is not monetary, EVPI is expressed in terms of the
improvement in the metric of interest (perhaps survival rate or
population size in an ecological setting); it is an additional step
for the decision-maker to consider how much to pay for the infor-
mation that leads to that improvement in performance. In an adap-
tive management setting, EVPI > 0 is a necessary condition for
identifying uncertainty that should be the focus of monitoring
and probing (Walters, 1986). It is not sufficient, however, because
other conditions need to be considered, for example, whether it is
possible to reduce the uncertainty through monitoring, and
whether the short-term costs of acquiring the information are
off-set by the long-term benefits of the information.

The value of information can also be used to compare the
importance of difference sources of uncertainty, through the con-
cept of partial EVPI, or the expected value of perfect x information
(EVPXI, Yokota and Thompson, 2004). Let si be a subset of the
uncertainty (say, a subset of the models), and sc

i its complement.
By resolving the uncertainty associated with just si, the perfor-
mance is expected to increase by

EVPXIðsiÞ ¼ Esi
½maxaEsc

i
½Uða; si; sc

i Þ�� �maxaEsi ;sc
i
½Uða; si; sc

i Þ�: ð2Þ

The EVPXI can be compared for different subsets of uncertainty
and can provide a measure, on a scale relevant to the decision-ma-
ker, of the value of reducing various components of uncertainty. In
a decision-making context, this is the most appropriate method for
sensitivity analysis (Felli and Hazen 1998, 1999), and it is also a
powerful tool for identifying the uncertainty that matters in an
adaptive management setting. For example, EVPXI could be used
to determine whether it was more important to reduce uncertainty
about, say, survival rates compared to reproductive rates in a pop-
ulation model. Note that the EVPXI for subsets of uncertainty are
not necessarily additive, thus, the sum of the EVPXI is not EVPI, ex-
cept in rare circumstances, but this does not undermine the utility
of this metric.

It is rare to acquire perfect information, so a more relevant mea-
sure is the expected value of imperfect information (EVII), also
known as the expected value of sample information (EVSI), which
measures the expected improvement in performance from acquir-
ing a sample of information,

EVSI ¼ Ex½maxaEsjx½Uða; sÞ�� �maxaEs½Uða; sÞ� ð3Þ

where x represents the sample information, and the first expecta-
tion is taken over the possible values of x that might arise from
the monitoring program (Yokota and Thompson, 2004). Calculating
EVSI requires a Bayesian preposterior analysis because it requires
calculating posterior distributions (of s|x) for all possible values of
the sample information, before the sample information is acquired.
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(Preposterior analysis is the term that Bayesian statisticians often
use in conjunction with experimental design (Berger, 1985). It
emphasizes that one is anticipating the posterior distribution prior
to collecting the data, by using the prior distribution to generate the
likelihood of the observed data.) One very useful extension of EVSI
is to evaluate the expected value of sample information for taking
any particular action, a. This can be used to identify which actions
are expected to reduce uncertainty most quickly.

The challenge with these value of information methods is that
they require articulation of a set of models (hypotheses), a prior
belief about the credibility of those models, and predictions of
the outcomes under each model and action combination. That is,
in order to evaluate what information is most valuable to collect,
we already seem to have to know quite a bit about the system. Is
this a cruel catch-22? At first, it seems to be, but all of those pieces
are already implicitly required if the decision-maker wants to
make a rational decision in the face of uncertainty. What’s re-
quired, then, is merely an articulation of what is already in the
mind of the decision-maker. For this, we turn to expert elicitation.

1.2. Expert elicitation

Of course, any decision-maker would prefer to have empirical
evidence to develop the predictions of the outcomes, U(a, s), and
the prior probability distributions for the model set s, and some-
times such data are available. But for many natural resource man-
agement decisions, such data are not available and cannot be made
available before an initial decision must be made. In these cases, it
is becoming increasingly common to rely on expert judgment to
develop estimates for the required quantities (Burgman, 2005;
Kuhnert et al., 2010). Expert elicitation is a large and mature field
of study in itself (Kahneman et al., 1982; Morgan and Henrion,
1990; O’Hagan et al., 2006), with a growing body of methods for
robustly and efficiently eliciting and combining judgments from
experts.

In ecological settings, the methods for expert elicitation most
commonly used are the Delphi process and its variants, including
the Nominal Group Technique (Delbecq et al., 1975; Linstone and
Turoff, 1975; Lock, 1987; MacMillan and Marshall, 2006). These
are group elicitation processes in which the experts are first asked
for independent input on some parameter(s) of interest. These esti-
mates are collated, and then shared with the whole group, along
with the rationale and evidence that each expert used. The experts
are then allowed to revise their estimates, if they so desire, to re-
flect the insights that arose from the group. This process can be re-
peated a number of times, until the experts are comfortable with
their responses. The responses can then be aggregated in some
manner, often by averaging, with retention of the range of re-
sponses to represent uncertainty in the parameter(s). The various
methods differ primarily in whether and how they allow the group
members to interact, and how they aggregate the individual re-
sponses. These methods of behavioral aggregation have been used
in so many circumstances, and with so many modifications, that
their nomenclature has become vague; the term ‘‘Delphi process’’
is now sometimes used to refer to any method in this general
realm, rather than to the strict original procedure. But whatever
they are called, these structured methods have the advantages that
negative aspects of group dynamics (such as dominance and
anchoring) can be avoided and a wide range of independent view-
points can capture the underlying uncertainty. The insights of
many can improve the thinking of individuals, and concerns about
language-based misunderstanding can be identified and
addressed.

There are detailed methods available to guide parameter elicita-
tion, depending on the type of parameter and the specific concerns
about bias that might be present (Kahneman et al., 1982; O’Hagan
et al., 2006). These include methods for eliciting intervals or entire
distributions as well as point estimates, and asking experts how
confident they are in their responses, as a way of gauging uncer-
tainty (Speirs-Bridge et al., 2010).
1.3. The Eastern Migratory Population of whooping cranes

Whooping cranes are listed as endangered under the US Endan-
gered Species Act, the Canadian Species at Risk Act, and by the
IUCN. As of late 2008 there were fewer than 400 individuals in
the wild, and fewer than 600 individuals in existence (T. Stehn,
US Fish and Wildlife Service [USFWS], unpublished data). Wild
whooping cranes exist in three populations, including the Aran-
sas-Wood Buffalo Population, which breeds at Wood Buffalo Na-
tional Park, Northwest Territories, Canada, and winters at
Aransas National Wildlife Refuge, Texas, USA; the introduced Flor-
ida Non-Migratory Population in central Florida, USA; and the
introduced Eastern Migratory Population (EMP).

Beginning in 2001, releases of captive bred birds have been used
to establish the EMP. Chicks hatched at the USGS Patuxent Wildlife
Research Center’s captive breeding facility (PWRC) in Maryland,
USA, are trained from hatching for ultralight aircraft-led releases.
This training consists of early imprinting of birds on costumed hu-
mans (such that they will follow costumed breeding center staff
and pilots) and progressive familiarization and exercise behind
grounded and, ultimately, airborne ultralight aircraft. Birds are
shipped to the USFWS Necedah National Wildlife Refuge (NNWR),
located in central Wisconsin, USA, in June or July of their first year
(i.e., at 1–2 months of age). Ultralight aircraft lead the birds south
during their first autumn to either Chassahowitzka or St. Marks
National Wildlife Refuges in Florida, USA. Birds are soft-released
there, and survivors return north on their own the following spring
(Urbanek et al., 2010). Beginning in 2005, additional chicks have
been hatched at the International Crane Foundation, in Wisconsin,
USA, for direct autumn release. These birds are also imprinted on
costumed humans, and shipped to a pen at NNWR, generally in
early July (i.e., at <1–2 months of age). Birds are then released at
or near NNWR during their first fall in the vicinity of previously re-
leased adult whooping cranes, with the hope that the released
chicks will associate with the adult cranes and follow them on
their first southward migration. Birds have been released every
year since 2001 using the ultralight method and every year since
2005 using the direct autumn release method.

As of October 2009, the size of the EMP was approximately 86
birds (R. Urbanek, USFWS, unpublished data). Survival in the pop-
ulation (83.6% for unpaired birds, 99.1% for paired birds, and 94.1%
for nesting birds) (Converse et al., submitted for publication) has
been comparable to survival in the Aransas-Wood Buffalo Popula-
tion (Link et al., 2003) which has been generally increasing for the
past 70 years. However, reproduction has been poor. Birds began
forming pairs in the spring of 2004, and made the first nesting at-
tempts in the spring of 2005. Through the spring of 2009, of 41
nests containing eggs, only three nests (all renesting attempts)
had successfully hatched chicks, and only one of those produced
a fledgling (R. Urbanek and R. King, USFWS, unpublished data).
Abandonment of nests during incubation appears to be by far the
most common proximal cause of nest failure. The cause(s) of aban-
donment are currently unknown.
2. Methods

A workshop was held March 24–27, 2009 at NNWR and at-
tended by the Refuge Manager (the decision-maker), staff from
NNWR, and crane experts from PWRC, USFWS, Florida Fish
and Wildlife Conservation Commission, the International Crane
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Foundation, Operation Migration, and the USGS Louisiana Fish and
Wildlife Cooperative Research Unit. Workshop members were
primarily chosen from the membership of the Whooping Crane
Eastern Partnership, a consortium of public agencies and non-
profit organizations dedicated to establishing a self-sustaining
migratory whooping crane population in eastern North America.
The workshop agenda used a PrOACT structure (Hammond et al.,
1999) to identify the key elements of the decision faced by the
Refuge Manager: Problem, Objectives, Alternatives, Consequences,
and Tradeoffs. The authors of this paper served as the facilitators
and decision analysts for the workshop.

During development of the predictions, a focus was placed on
first identifying a set of hypotheses for nest failure. Formal elicita-
tion of the consequences was then organized around the alterna-
tive hypotheses. A version of the Delphi process modified for
face-to-face interaction, much like the Estimate-Talk-Estimate
method of Gustafson et al. (1973) and Lock’s (1987) general ap-
proach to group judgmental forecasting, was used to elicit predic-
tions from the panel of experts. After definition of the metrics of
interest, the experts were asked to independently predict the out-
comes of applying each particular management action under each
hypothesis. These first responses were collated and discussed in a
face-to-face group setting. Experts were then allowed to modify
their predictions, if they so desired, based on clarifications and in-
sights that arose during discussion. The results were again collated
and discussed, and a number of remaining linguistic uncertainties
were identified. A third round of elicitation occurred by email after
the workshop. Experts were asked to provide point estimates for
each outcome of interest; they were not asked for interval esti-
mates, nor their degree of confidence in their predictions. For this
analysis, simple arithmetic averages across experts were used.

A priori weights on the hypotheses were elicited from the ex-
perts by giving each expert 40 points to allocate over the eight
hypotheses, with the number of points representing the strength
of their belief that the hypothesis was operating. The independent
weights were collated, and the experts presented the evidence they
thought was important in their assignment of weights. After dis-
cussion, the experts were allowed to modify the weights they
placed on the objectives. The arithmetic average weight across ex-
perts was used for further analysis.

Weights on the multiple objectives were elicited by a process of
swing weighting (von Winterfeldt and Edwards, 1986). For the
measurable attribute associated with each objective, the range of
possible values was identified from the elicitation of predictions,
with the minimum and maximum taken over the hypotheses and
the actions (but not the experts, as their values had already been
averaged). From these ranges, a series of hypothetical scenarios
was created: the baseline scenario received the worst score on all
attributes; the remaining scenarios each scored best on one attri-
bute and worst on the others. An expert panel (the same group
as above, but now acting to reflect the values of the decision-mak-
ers) was asked to rank the hypothetical scenarios, then assign a
score to each between 0 and 100, where 0 was the score attributed
to the baseline scenario, and 100 the score attributed to their top-
ranked scenario. In this manner, the scores represent how much
any one expert wanted to see a particular attribute swing from
its worst to its best score. The individual scores were converted
to weights by dividing by the sum of the scores, and the weights
were averaged over the experts.

The problem was solved using multi-criteria decision analysis
(MCDA), specifically a variant of the simple multi-attribute ranking
technique (SMART, Goodwin and Wright, 2004). The best action to
take in the face of uncertainty was found as

a� ¼ arg max
a

X

o

wo

X

s

wsUða; s; oÞ ð4Þ
where U(a, s, o) was the expected response on measurable attribute
o, under hypothesis s and action a. The value of resolving all uncer-
tainty expressed by the hypotheses s was found by calculating the
EVPI (Eq. (1)).

Several sensitivity analyses were performed, using the concept
of value of information. The partial EVPI (EVPXI) for the eight indi-
vidual hypotheses was calculated using Eq. (2). In this case, the
partial information was assumed to be able to perfectly test that
hypothesis only, thus the outcome was either confirmation of that
hypothesis (thus, its weight became 1) or refutation (its weight be-
came 0); in the latter case, the weights on the remaining hypothe-
ses were rescaled in proportion to their original weights. The
expected value of sample information (EVSI, Eq. (3)) was calculated
for each action a. This calculation assumed the response (weighted
over the multiple objectives) could be observed with a normally
distributed sampling error. We investigated sampling errors corre-
sponding to coefficients of variation between 0% and about 30%,
rates typical in many natural resource management settings. The
posterior distribution of the hypothesis weights was found using
Bayes’ theorem, and used in the preposterior analysis required
for EVSI.
3. Decision framework

The management problem was framed as a multi-criteria deci-
sion analysis under uncertainty: what management strategy should
be undertaken at NNWR to benefit the EMP of whooping cranes, as
expressed through four objectives, in the face of uncertainty about
what is causing reproductive failure? This analysis involves manag-
ing tradeoffs among several objectives, as well as examining the im-
pact of several specific hypotheses for reproductive failure. To
develop this framework, we needed to specify the objectives, artic-
ulate the hypotheses for reproductive failure, develop potential
management strategies, and predict the outcomes of each strategy
on each objective under the alternative hypotheses.

This decision problem is nested within a larger decision prob-
lem—management of wetland and associated habitats on NNWR
for a variety of purposes, including crane breeding, but also includ-
ing wetland integrity and function, wildlife habitat, public use, and
operational efficiency. While recognizing that this larger context
was the real situation he had to make decisions within, the Refuge
Manager nevertheless wished to see how he might solve the more
focused crane problem, to understand that well before embedding
it within a more complicated decision analysis.
3.1. Objectives

The decision-maker, with guidance from the workshop partici-
pants, identified four objectives with regard to demographic per-
formance of EMP cranes at NNWR. Each of these objectives
contributes to the fundamental objective of the Whooping Crane
Eastern Partnership, of which USFWS is a founding member: estab-
lishment of a self-sustaining migratory whooping crane population
in eastern North America. First, in the long-term, there is a desire
to provide suitable nesting sites on the Refuge for whooping
cranes. The second objective is to maximize the reproductive suc-
cess of the pairs breeding on NNWR. Third, the Refuge wants to
maximize the survival of the birds during the breeding season
while they are at NNWR (April 1–November 1). The fourth objec-
tive is to maximize the body condition of birds upon departure
for the southward migration.

The expert panel developed measurable attributes for these four
objectives. (1) The average number of territorial pairs on NNWR
over time. Territorial pairs are bonded, exhibit one or more breeding
behaviors, and occupy a core area on the Refuge. (2) The fledging
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rate, expressed as the average number of young that depart
NNWR for southward migration per pair. (3) Average survival of
white birds (adults and sub-adults) from April 1 to November 1.
(4) Average body condition just prior to fall migration, as measured
by an existing constructed scale (1–5) for body condition (Olsen
et al., 1996).

The swing weighting was conducted after the elicitation of the
predictions (because the range of responses was needed for the
swing weighting exercise). The average weights placed on the four
objectives were: number of pairs, 13.4%; reproductive success,
59.9%; adult survival, 16.3%; and body condition, 10.4%. The
weights did differ somewhat across the panelists; a principal com-
ponents analysis showed that the first component, which was dri-
ven by the weight on reproductive success, explained 75% of the
variation in the weights across experts.

3.2. Hypotheses

The expert panel initially identified 34 hypotheses that could be
posited to explain the reproductive failure of EMP cranes. Each
member of the expert panel was asked to allocate 34 points among
these hypotheses. The sum of scores across experts was used to
rank the hypotheses, and the top eight were retained for further
analyses. After elucidation and discussion of these eight hypothe-
ses, the panel was asked to assign weight to each, based on their
perception of the evidence. The eight hypotheses, with the average
weights across experts, are briefly described below.

1. Too young (9.4%). Collectively, the EMP birds, which were all
released into the wild as juveniles over the past 8 years, are
not yet old enough to exhibit mature and successful reproduc-
tive behavior. Cranes are long-lived birds with a late age-at-
first-reproduction; perhaps these cranes just need longer to
exhibit successful reproduction.

2. Black flies (29.1%). Harassment of incubating birds by parasitic
black flies causes nest abandonment, which leads to nest
failure.

3. Social conditioning (11.9%). All of the birds released to the EMP
were costume-reared, that is, they imprinted on humans
dressed in costumes designed to conceal human features. The
lack of experience with natural pre- and post-hatching condi-
tions leads to poor association between the parents and the
nest, then nest abandonment and poor nest defense.

4. Nutrient limitation on NNWR (22.8%). Energetic resources are
limited at NNWR, leading to nutritional stress. Adults abandon
reproductive attempts to increase their own survival.

5. Nutrient limitation during winter or migration (5.9%). Food
resources are inadequate on the winter quarters or in the
migratory habitat, thus, the adults arrive at NNWR in poor con-
dition and cannot successfully sustain breeding effort.

6. Nutrient limitation on both NNWR and during winter or migra-
tion (6.6%). Arrival condition is poor and cannot be compen-
sated by weight gain at NNWR.

7. Human egg salvage (4.4%). The nests at NNWR are watched care-
fully by biologists. When nests appear to be abandoned, the biol-
ogists will salvage the eggs for captive rearing. Perhaps the nests
are not being abandoned, but rather just attended intermit-
tently, and the egg salvage is actually the cause of nest failure.

8. Human disturbance (10.0%). Research activities, refuge opera-
tions, and/or public access are disturbing nesting pairs, leading
to nest abandonment and failure.

3.3. Alternative management strategies

After the objectives had been identified and the hypotheses
articulated, the management team, with guidance from the expert
panel, developed seven potential management strategies. As a
starting point for development, the group was asked to consider
in turn what action would be most fruitful if each hypothesis
was in fact the case. The strategies identified were:

1. Status quo, or wait (developed to address the ‘‘Too young’’
hypothesis). Continue to operate as in the past.

2. Kill flies (developed to address the ‘‘Black fly’’ hypothesis). Use
insecticides (BTI) and strategic water management to reduce
black fly populations during the crane breeding season.

3. Swap eggs (developed to address the ‘‘Social conditioning’’
hypothesis). Swap eggs in nests for eggs further along in incuba-
tion, supplied from the captive flock. This would allow adults to
spend less time on the nests, yet still have wild-hatched chicks.

4. Restore meadows (developed to address the two hypotheses
that involve nutrient limitation on NNWR). Conduct meadow
restoration, with supplemental feeding in the interim, to
increase food resources at NNWR for cranes.

5. April drawdown and burn (developed to address the two
hypotheses that involve nutrient limitation on NNWR). Create
a checkerboard of partial drawdowns and burning in
impounded wetlands in early April, to increase food resources.

6. No salvage (developed to address the ‘‘Human egg salvage’’
hypothesis). Discontinue salvaging eggs, or at least develop a
less invasive set of operational rules.

7. No disturbance (developed to address the ‘‘Human disturbance’’
hypothesis). Minimize the disturbance to nests during the
breeding season; keep people outside of the maximum flush
distance; eliminate egg swapping and egg salvage.

3.4. Predictions

The expert panel was asked to make predictions for the re-
sponse on the four measurable attributes, of the seven strategies,
under the eight hypotheses. The experts were asked to predict
the response averaged over the 10 years after each strategy was
fully implemented (assuming that implementation would begin
in the year following this analysis). The average response was ta-
ken over the 10 experts who participated, after the third round
of elicitation (Tables 1–4).

For the objective of maximizing the number of territorial pairs
on the refuge, the best action to take was meadow restoration, un-
der all hypotheses (Table 1). For the objective of maximizing repro-
ductive success, the best action to take depended strongly on the
hypothesis, with no salvage, no disturbance, April drawdown and
burn, and swap eggs all chosen as optimal under one or more
hypotheses (Table 2). Interestingly, the best action to take to
achieve this objective, given the expected response over all
hypotheses was restore meadows, an action not identified as opti-
mal under any of the individual hypotheses. For the objective of
maximizing adult survival during the breeding season, the best ac-
tion depended on the hypothesis, with no salvage, restore mead-
ows, and swap eggs all identified as optimal under individual
hypotheses, and restore meadows best under the average response
(Table 3). For the objective of maximizing body condition upon
departure, the best action was restore meadows under six of the
hypotheses, and swap eggs under the other two (Table 4) with re-
store meadows again best under the average response.
4. Results

The combined score, with each objective first normalized to a
0–1 scale, and then weighted across objectives, reveals that the
best action to take depends on the hypothesis. In the face of uncer-
tainty, the best action to take is meadow restoration (not surprising,



Table 1
Predicted number of pairs using NNWR in the long-term, as a function of the management strategy employed and underlying hypotheses about reproductive failure. These
predictions are the unweighted average of the responses from 10 experts. The best strategy, conditional on each hypothesis, is shown in bold. The expected value is the weighted
average over hypotheses, with weights determined by the same panel of experts.

Hypotheses Strategies

1 2 3 4 5 6 7
Description Weight (%) Wait Kill flies Swap eggs Restore meadows April DD and Burn No salvage No disturbance

Too young 9.4 14.1 14.0 14.2 17.2 14.7 14.4 13.7
Black flies 29.1 12.8 13.5 13.4 16.3 13.9 14.2 13.1
Social conditioning 11.9 13.1 13.0 13.2 16.0 13.5 13.4 13.8
Nutrient limitation: NNWR 22.8 13.1 13.0 13.2 18.6 15.7 13.2 13.4
Nutrient limitation: winter 5.9 13.1 13.0 13.2 15.5 13.3 13.2 13.4
Nutrient limitation: both 6.6 13.1 13.0 13.2 17.2 14.5 13.2 13.4
Egg salvage 4.4 13.1 14.0 14.0 15.8 13.3 13.2 12.8
Disturbance 10.0 13.1 13.8 14.7 15.8 13.2 13.2 12.7

Expected Value 13.11 13.36 13.54 16.79 14.25 13.60 13.27

Table 2
Predicted fledging rate, as a function of the management strategy employed and underlying hypotheses about reproductive failure. These predictions are the unweighted average
of the responses from 10 experts. The best strategy, conditional on each hypothesis, is shown in bold. The expected value is the weighted average over hypotheses, with weights
determined by the same panel of experts.

Hypotheses Strategies

1 2 3 4 5 6 7
Description Weight (%) Wait Kill flies Swap eggs Restore meadows April DD and burn No salvage No disturbance

Too young 9.4 0.246 0.216 0.235 0.244 0.256 0.223 0.181
Black flies 29.1 0.069 0.199 0.128 0.124 0.119 0.204 0.099
Social conditioning 11.9 0.074 0.097 0.108 0.139 0.141 0.113 0.191
Nutrient limitation: NNWR 22.8 0.074 0.094 0.140 0.289 0.290 0.103 0.116
Nutrient limitation: winter 5.9 0.074 0.089 0.125 0.144 0.156 0.103 0.116
Nutrient limitation: both 6.6 0.074 0.089 0.135 0.244 0.245 0.116 0.121
Egg salvage 4.4 0.094 0.226 0.227 0.147 0.128 0.166 0.105
Disturbance 10.0 0.091 0.154 0.252 0.127 0.108 0.106 0.150

Expected value 0.091 0.147 0.155 0.185 0.183 0.148 0.129

Table 3
Predicted survival rate, as a function of the management strategy employed and underlying hypotheses about reproductive failure. These predictions are the unweighted average
of the responses from 10 experts. The best strategy, conditional on each hypothesis, is shown in bold. The expected value is the weighted average over hypotheses, with weights
determined by the same panel of experts.

Hypotheses Strategies

1 2 3 4 5 6 7
Description Weight (%) Wait Kill flies Swap eggs Restore meadows April DD and burn No salvage No disturbance

Too young 9.4 0.928 0.927 0.930 0.933 0.929 0.929 0.928
Black flies 29.1 0.923 0.925 0.925 0.930 0.927 0.936 0.925
Social conditioning 11.9 0.928 0.927 0.930 0.933 0.929 0.929 0.932
Nutrient limitation: NNWR 22.8 0.923 0.921 0.925 0.938 0.932 0.924 0.924
Nutrient limitation: winter 5.9 0.928 0.926 0.930 0.938 0.934 0.929 0.929
Nutrient limitation: both 6.6 0.923 0.922 0.925 0.935 0.932 0.924 0.924
Egg salvage 4.4 0.928 0.935 0.939 0.934 0.930 0.929 0.927
Disturbance 10.0 0.926 0.933 0.938 0.932 0.928 0.927 0.925

Expected value 0.925 0.926 0.928 0.934 0.929 0.929 0.926
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as this was the best action to take in the face of uncertainty under
each objective), with an expected composite score of 0.590
(Table 5). This result is not sensitive to uncertainty in the weights
on the objectives; all individual weightings from the advisory
panel led to choice of the same action.

If uncertainty can be fully resolved before the action is chosen,
the expected performance rises to 0.707, thus, the EVPI is 0.117, an
increase in performance of 19.9%. For objective 1 (maximize terri-
torial pairs) alone, the EVPI is 0, because the best strategy (restore
meadows) is the same under all hypotheses (Table 1). For objective
2 (maximize reproductive success, Table 2) alone, the expected
fledging rate increases from 0.185 to 0.232 (25.7%) through resolu-
tion of uncertainty. For objective 3 (maximize adult survival,
Table 3) alone, the expected adult survival increases from 0.934
to 0.936 (0.3%), and for objective 4 (maximize fall body condition,
Table 4) alone, the expected body condition increases from 3.050
to 3.057 (0.2%) through resolution of uncertainty.

The partial EVPIs due to individual hypotheses reveal that the
most value of information comes from discerning hypothesis 2
(black flies) from all the others, followed by hypothesis 8 (human
disturbance) (Fig. 1). As it turns out in this case, the partial EVPIs
do sum to the total EVPI, and so the partial EVPIs can be shown
as a pie chart (Fig. 2). Resolution of hypothesis 2 (black flies) pro-
vides 54% of the total EVPI, followed by hypotheses 8 (human dis-
turbance, 32%), 7 (egg salvage, 8%), and 3 (social conditioning, 6%).

Using the expected value of sample information to evaluate
how valuable each action is in generating knowledge for future
decisions, we find the answer depends on the expected level of



Table 4
Predicted body condition on departure from NNWR, measured on a constructed 5-point scale (Olsen et al., 1996), as a function of the management strategy employed and
underlying hypotheses about reproductive failure. These predictions are the unweighted average of the responses from 10 experts. The best strategy, conditional on each
hypothesis, is shown in bold. The expected value is the weighted average over hypotheses, with weights determined by the same panel of experts.

Hypotheses Strategies

1 2 3 4 5 6 7
Description Weight (%) Wait Kill flies Swap eggs Restore meadows April DD and burn No salvage No disturbance

Too young 9.4 2.55 2.55 2.61 2.92 2.80 2.57 2.55
Black flies 29.1 2.45 2.65 2.76 2.98 2.81 2.97 2.55
Social conditioning 11.9 2.55 2.55 2.67 2.93 2.81 2.56 2.75
Nutrient limitation: NNWR 22.8 2.45 2.50 2.56 3.42 3.35 2.46 2.45
Nutrient limitation: winter 5.9 2.55 2.55 2.57 2.88 2.82 2.56 2.55
Nutrient limitation: both 6.6 2.45 2.50 2.59 3.25 3.21 2.51 2.45
Egg salvage 4.4 2.55 2.77 2.83 2.77 2.80 2.56 2.53
Disturbance 10.0 2.55 2.67 2.81 2.77 2.80 2.51 2.49

Expected value 2.49 2.59 2.67 3.05 2.95 2.65 2.54

Table 5
Weighted response across the four objectives, as a function of the management strategy employed and underlying hypotheses about reproductive failure. Each individual
objective was normalized to a 0–1 scale before the weighed average was taken, thus this weighted scale is also between 0 and 1, with 1 representing the best possible
performance simultaneously on all four objectives, and 0 representing the worst. The optimal performance in the face of uncertainty is 0.590; the expected performance with full
resolution of uncertainty is 0.707, thus the EVPI is 0.117.

Hypotheses Strategies

1 2 3 4 5 6 7
Description Weight (%) Wait Kill Flies Swap eggs Restore meadows April DD and Burn No salvage No disturbance

Too young 9.4 0.586 0.491 0.581 0.735 0.663 0.539 0.402
Black flies 29.1 0.021 0.425 0.242 0.373 0.253 0.589 0.139
Social conditioning 11.9 0.093 0.145 0.220 0.429 0.321 0.218 0.485
Nutrient limitation: NNWR 22.8 0.036 0.081 0.254 0.992 0.863 0.128 0.166
Nutrient limitation: winter 5.9 0.093 0.119 0.260 0.466 0.405 0.185 0.223
Nutrient limitation: both 6.6 0.036 0.077 0.243 0.792 0.703 0.172 0.179
Egg salvage 4.4 0.147 0.622 0.662 0.436 0.291 0.354 0.158
Disturbance 10.0 0.120 0.393 0.740 0.363 0.216 0.168 0.256

Expected value 0.106 0.284 0.343 0.590 0.475 0.331 0.231
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measurement error (Fig. 3). If the weighted response across the
four objectives (which is expressed on a 0–1 scale) could be mea-
sured quite precisely, with a standard deviation of 0.03 or less, the
most informative action would be strategy 2 (kill flies) and it
would generate more than 60% of the EVPI. However, if the mea-
surement error is expected to be greater than 0.03, the most infor-
mative strategy is 6 (no salvage), followed closely by 3 (swap eggs).
The EVSI for strategy 4 (restore meadows) is never high, and drops
off very quickly with increases in measurement error.

5. Discussion

In the face of uncertainty and without being able to gather more
information, the recommended strategy at NNWR to benefit crane
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demography is meadow restoration. This result is not sensitive to
uncertainty in the objective weightings, but it is sensitive to uncer-
tainty about the causal mechanism for reproductive failure. The
decision-maker does have the opportunity to gather more informa-
tion before committing to a final course of action; in fact, the man-
agement decision is made and can be adjusted annually, so there is
an opportunity to approach this problem adaptively. As adapting to
new information is possible, what information is most important
to acquire, and what strategies might be most informative in an
adaptive setting?

First, the increased performance from reduction of uncertainty
(the EVPI) is driven by the response of reproductive success, rather
than any of the other three objectives, to management actions.
Thus, a monitoring program designed to measure reproductive
success will be most valuable; measuring the other response vari-
ables is not nearly as important for identifying the best course of
action. Second, if an experimental approach is taken, it is most
important to test hypotheses 2 (the black fly hypothesis) and 8
(the human disturbance hypotheses); the value of discerning the
other hypotheses is minimal. A corollary to this conclusion is that
the design of a formal adaptive management framework should fo-
cus on uncertainty about the black fly and human disturbance
hypotheses, perhaps by including alternative models that differ
in these respects; including uncertainty associated with the other
hypotheses is not necessary. Third, in an adaptive approach, the
most informative strategies are likely to be 6 (no salvage) and 3
(swap eggs)—these strategies can most robustly resolve the impor-
tant uncertainties, although strategy 2 (kill flies) is most informa-
tive if the response can be measured quite accurately. Because the
best strategy in the face of uncertainty (action 4) is not the same as
the most informative strategy (actions 6 and 3), this is precisely the
case when active adaptive management is going to be more bene-
ficial than passive adaptive management (Walters, 1986). An active
strategy will favor actions 6 and 3 in the short-term to quickly re-
solve uncertainty, then switch to the strategy that is optimal once
the likely underlying hypothesis has been identified. An active dy-
namic optimization (McDonald-Madden et al., 2010; Williams,
1996) could be undertaken here to identify the optimal strategy
as a function of the information state (the weights on the
hypotheses).

In the introduction, we wrote of two key factors in identifying
the uncertainty of concern in an adaptive management setting:
high expected value of information, and high power of monitoring.
We have not fully addressed the second factor for the crane case
study, but as an adaptive program for management of cranes on
NNWR is developed, the power of the monitoring methods to dis-
cern hypotheses needs to be investigated. The key response vari-
able of interest, the fledging rate, is currently monitored with
high precision; the more relevant question is whether an experi-
mental or adaptive program can be designed that controls enough
external variation to allow the competing hypotheses to be com-
pared and evaluated. This is precisely the issue that is captured
in the expected value of sample information. If the sampling vari-
ance is high, due to measurement error or uncontrolled stochastic-
ity in the system, the expected value of information decreases. We
have investigated the impact of sampling variance over a range
that is typical in ecological studies, but we have not yet evaluated
what level of sampling variance we could expect in this particular
setting.

The crane decision problem we have framed is admittedly a
simplification of a larger problem. Some of the details that we
omitted may be important. First, we have been vague about the
time-frame of the management strategies. Some of the strategies
(like the black fly treatment strategy) can be implemented quickly
and would be expected to generate responses quickly; others (like
meadow restoration) might take years to implement and years
more to show differences under the various hypotheses. These
time-dependencies could have a strong effect on the value of infor-
mation. Second, we have not factored in the costs of research and
implementation. In part, whooping crane conservation is so impor-
tant that costs are a minor concern compared to persistence and
success of reintroduction; indeed, the American household willing-
ness-to-pay value for whooping cranes is higher than that of bald
eagles (Bowker and Stoll, 1988; Loomis and White, 1996). But for
NNWR, with a limited annual budget, the costs of some manage-
ment actions could be a factor. Further refinement of the decision
analysis we have presented may be needed to fully capture the
decision-makers’ concerns.

In classical economic settings, EVPI is calculated on the primary
scale of interest, dollars, and thus can be interpreted not only as
the increased expected performance (profit) from acquisition of
perfect information, but also as the maximum the decision-maker
should be willing to pay for that information. If the cost of the
information is greater than the EVPI, it is better to make the deci-
sion without resolving uncertainty first. The EVPI we have calcu-
lated is expressed on a dimensionless weighted multi-criteria
scale, and it is not transparent how to translate this into a dollar-
equivalent. How much is it worth to increase the weighted mul-
ti-criteria response from 0.590 to 0.707 (Table 5), or the expected
fledging rate from 0.185 to 0.232 (Table 2)? Answering these ques-
tions requires the decision-maker to make a trade-off between bio-
logical performance and cost. There are several methods for doing
this, one of which resembles the swing weighting methods used to
weight the objectives in this example. We did not undertake such
an analysis with the decision-maker; as noted above, whooping
crane conservation is important enough that it seemed clear the
value of information exceeds the cost of acquiring that informa-
tion, without having to explicitly compare the biological and cost
scales. In other settings, however, it may be valuable to make this
explicit comparison.

We have formulated this crane problem as a multi-criteria deci-
sion analysis and our methods demonstrate the value of EVPI in the
multi-criteria setting. But unlike in most multi-criteria settings, the
objectives we have used may be viewed as means to a single fun-
damental objective of maximizing the persistence of the EMP. In
this respect, an appropriate weighting among the means objectives
could be attained by using a population model that predicted per-
sistence as a function of number of pairs, fledging success, adult
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survival, and body condition on departure; in this way, the swing-
weighting procedures would be unnecessary. On the other hand,
separation of these components reflects the particular perspective
of management at NNWR, and did allow us to identify the most
important proximate life-history variables to monitor, something
that could be lost by combining the proximate responses into a sin-
gle ultimate response (like probability of persistence). A hybrid ap-
proach could be pursued in situations like this, one that follows the
multiple proximate responses, but uses a population model to
determine their weights.

We have focused on the uncertainty as expressed by the alter-
native hypotheses, using the average responses from the 10 ex-
perts to estimate those hypotheses. But there are two additional
sources of uncertainty we could have pursued: the uncertainty
across experts, and the confidence of individual experts. In the first
case, we could look at whether the results of the analysis are sen-
sitive to the individual responses of the experts, using methods
similar to what we have shown here. In the second case, we would
have needed to elicit the confidence of the experts in their predic-
tions, which we did not do. Analysis at this level of detail is beyond
the scope of this paper, but we do believe the uncertainty captured
by the hypotheses is more important to the decision than the
uncertainty across experts. There are reasons to believe, however,
that the aggregate responses of the experts could have a few flaws.
For example, the experts predicted that the swap eggs strategy
would produce the highest survival rate and body condition under
several of the hypotheses (Tables 3 and 4); we cannot explain the
logic behind this prediction. As a second example, the best strategy
under the black fly hypothesis for maximizing reproductive suc-
cess is not killing flies, as expected, but preventing egg salvage (Ta-
ble 2). Perhaps the experts did intend these patterns, but it is also
possible that some linguistic uncertainty remained in the elicita-
tion, that the experts had become fatigued and were not able to
see all the logical patterns they wished to express in the predic-
tions, or that the averaging across experts somehow produced a
spurious pattern. These observations serve to emphasize that ex-
pert elicitation does need to be undertaken carefully and slowly,
with multiple opportunities for feedback; another round of review
with the experts would have been valuable to determine whether
all the observed patterns in the predictions were intended.

We evaluated the uncertainty captured by eight hypotheses,
but these were only the top ones among a set of 34, and the true
reason may lie within that larger set, or indeed, in a hypothesis
that has yet to be articulated. Does this undermine the analysis
herein? On one hand, if the truth is intermediate between existing
hypotheses, that is, a weighted average, then the EVPI calculations
may overstate the value of information, because they assume that
the truth is one of the stated extremes. On the other hand, if the
truth lies far outside of the articulated hypotheses, then the EVPI
calculations may understate the value of information. There is
not a corresponding EVPI calculus for uncertainty that is not or
cannot be articulated; anticipating the value of resolving ‘‘un-
known unknowns’’ is a philosophical conundrum, but possibly an
important consideration in monitoring design (Wintle et al., 2010).

The central point we wish to emphasize is that the EVPI calcu-
lus, in its various forms, is immensely valuable in identifying the
important underlying uncertainties in a decision context, and
should be common practice for designing adaptive management
frameworks. While this calculus is not trivial, it only requires the
same amount of information that a formal structured decision
analysis would require.

It will seem counter-intuitive to some that the design of an
adaptive management program requires the kind of information
needed for an EVPI calculation, because one of the points of adap-
tive management is to acquire information in the process of man-
agement. An adaptive management framework does not require
EVPI for its design, but an efficient one does. Without this kind of
a priori analysis, it is quite possible to invest in the wrong monitor-
ing, to focus on uncertainty among the wrong set of models, and to
take the wrong actions to balance management and learning.

The design of an adaptive program, guided by EVPI calculations,
does require some a priori predictions and model weights. In the
absence of empirical data to build these tools, expert elicitation
is a powerful companion tool. The most dedicated empiricists balk
at the use of expert elicitation, and there is debate in the judgmen-
tal forecasting literature about the accuracy, precision, bias, and
confidence of experts (the literature is large, Wright and Ayton,
1987 is one of many entrees). But there are reasons to embrace ex-
pert elicitation. First, it is commonly the only recourse a decision-
maker has, when the context calls for a decision to be made, or an
adaptive program to be initiated, before more information can be
collected. Second, in an adaptive program, the predictions made
by experts need only to be viewed as initial hypotheses; the mon-
itoring program and the information feedback that arises from it
form the empirical tests of the hypotheses.
6. Conclusions

In setting up an experimental or adaptive management pro-
gram for management of breeding whooping cranes at Necedah
National Wildlife Refuge, the most important uncertainty to ad-
dress concerns management effects on the fledging success from
nests of territorial pairs. The most valuable hypotheses to discern
are the ‘‘black fly’’ and ‘‘human disturbance’’ hypotheses, and the
most informative actions may be the fly insecticide and no salvage
strategies, followed by the swap eggs strategy. While there are
many uncertainties about the demography of cranes in the EMP,
the reproductive behavior of captive-reared (and ultimately wild-
hatched) cranes at NNWR, and the effects of various management
strategies, not all uncertainty is relevant to decision-making. The
components identified above should be central to future learning
designed to improve management of this conservation icon.

We come to these conclusions by using the tools of expert elic-
itation and expected value of information to frame and analyze the
particular decision problem at hand. More generally, we argue that
these tools should have a central role in design of any adaptive
management program.
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