How do input loads and internal cycling affect hypoxia
in Chesapeake Bay?

...... and how does hypoxia affect internal cycling and fate
of input loads in the estuary?
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Outline

A conceptual picture of how watershed-derived nutrients are
distributed and processed within the estuary

The modes in which these nutrients drive hypoxia

The potential for non-dissolved materials to become bioavailable
and measurably impact hypoxia

The role and control of internal processing (i.e., ‘internal loading’)
of nutrients and implications for eutrophication



Regional Variability in Inputs, Transport and Biogeochemistry
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Dissolved N Dominates TN Input, Particulate P Larger Fraction of TP
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Dissolved N, P
in Estuary

Reveal Role of
DIN, TP Input

* No PO, peaks
during peak flow

* PO, peaksin late
summer
everywhere

* NO,; peaks in
winter-spring with
peak flow
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Mixing Diagrams to Interpret Estuarine Transformations

Susquehanna
long-term
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Organic carbon balance and net ecosystem

Production metabolism in Chesapeake Bay
A|ga| GPP Vascular Plant W. M. Kemp'*, E. M. Smith!, M. Marvin-DiPasquale?**, W. R. Boynton?
(3622) GPP (50)
Inputs Outputs
Susq.River (151) Ocean Export (281)
—>
* Phytoplankton dominate organic

Tributaries (110) TOC Burial (217) matter pools

Pool

Our ability to control hypoxia
rests with controlling these pools
Atmospheric (24) TOC Fluxes Fisheries (45)
> ( 10°g Cy") > Nutrients that support these pools
primarily enter in dissolved form

Plankton Benthos
(2503) (899)

The recycling of these nutrients in
Y driven by a combination of

NPP = 1119 Respiration processes varying over space, time
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Net Algal Carbon Production To Support Hypoxia
Supported by Relative DIN Excess in Load
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Kemp et al. 1997, Herrmann et al. 2015



Middle Upper
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Most Models Suggest that

Hypoxia Responds to Both

Nitrogen and Phosphorus
Load Changes

Experimental N and P enrichment,
holding physics constant

More sensitive to N than P — mostly a
function of far greater N-limited waters
in modeled mainstem

Increase in oxygen consumption driven
by seaward waters



What Do We Know
About the Cycling of
N and P within the
Estuary?



Particulate Phosphorus “Bioavailability”

Water Column

* Desorption in the water
column (+ salinity) driven by
physical chemistry or
biological uptake

* Decomposition of organic P

* pH-related Fe-bound P
release

Sediment

Release of P adsorbed/co-
precipitated with Fe oxides via
iron reduction (w/o sulfides)

Release of Fe oxide-bound P
via conversion of Fe oxides to
Fe sulfides

Release of Fe-bound P via high
pH
Not all Fe-bound P is released

in sulfidic CB sediments — (0.16
mg P g buried)?

Yoshi, S. R., R. K. Kukkadapu, D. J. Burdige, M. E. Bowden, D. L. Sparks, and D. P. Jaisi. 2015. Organic Matter Remineralization Predominates
Phosphorus Cycling in the Mid-Bay Sediments in the Chesapeake Bay. Environmental Science & Technology 49: 5887-5896.

Particulate N “bioavailability” is relatively simple

— a matter of reactivity of OM and denitrification



‘Small’ Fraction of Scoured P Could be Remineralized in Bay
Sulfide-Extractable P, Inorganic P, From Susquehanna Reservoirs

Station 13

About % to % of TP is sulfide-
releasable
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Reservoir Sediments, River Particulates Are Not Highly Reactive
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So,
Dissolved nutrients are key drivers of phytoplankton P, and hypoxia
Particulate N inputs are small, poorly reactive

Particulate P inputs are large, somewhat unreactive

But how is the ultimate reactivity related to the estuarine conditions
in which these particulates ultimately land?



Conceptual Model of O, Interactions with N-Cycle

Normoxic Conditions Hypoxic Conditions




Conceptual Model of O, Interactions with P-Cycle

Normoxic Conditions Hypoxic Conditions




Sediment
Process
Observations
in Chesapeake
Bay

)?{ ®

*1985-1996

*Sampled 4-6 Times
Between May and
September

Still Pond




Spatial Variation in
Sediment-Water
Fluxes

* Sediment O, Uptake lowest in region
between Bay Bridge and Patuxent

* NH,"and PO,* fluxes peak in mid-
Bay

* Bottom-water O, low where N
and P fluxes peak
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Hypoxia, Sulfide Stimu

NH,* flux (umol m™= h™")
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Numerical Model Distributions of P Flux
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Temporal Mismatch in Fluxes Drives N:P Ratios
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In Conclusion.

* Phytoplankton drive biological contribution to hypoxia

e Dissolved forms of N and P are the most direct
form of input to fuel phytoplankton

* Input PP is large, can be remobilized as DIP to be made
bioavailable, direct PN loads a small piece of TN puzzle

* Fate of particulate N and P depends on where the are
remineralized in estuary

* Hypoxia enhances the potential for N and P recycling, drives
shift in N to P ratio
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