Characteristics and temporal trends of nutrient and sediment loads from the nontidal Chesapeake watershed Qian Zhang

UMCES @ CBPO

STAC Workshop (03/20/2019)

- **Explore the characteristics of riverine loads:**
 - <u>By species</u>: SS, TN, NOx, TP, PO4
 - 9 major tributaries
 - 4 seasons
 - 4 discharge quantiles
- Explore the temporal trends of riverine loads:
 - <u>By species</u>: SS, TN, NOx, TP, PO4

- * Focused on the RIM watersheds (nontidal) in 1985-2016
- * Used USGS R workspaces by Moyer et al. (2017)

River Input Monitoring (RIM) Sites

WRTDS: Trend Analysis

For the latest load estimates, see Moyer et al. (2017); https://doi.org/10.5066/F7RR1X68.

Part I

Explore the characteristics of riverine loads:

- <u>By species</u>: SS, TN, NOx, TP, PO4
 - 9 major tributaries
 - 4 seasons
 - 4 discharge quantiles

True-condition Estimates (w/o TIME) 1985-2016 total

- Explore the temporal trends of riverine loads:
 - <u>By species</u>: SS, TN, NOx, TP, PO4

- * Focused on the RIM watersheds (nontidal) in 1985-2016
- * Used USGS R workspaces by Moyer et al. (2017)

ordered by watershed size

Distribution by Tributary (% Load)

Distribution by Tributary (FWC)

Range in average concentration: SS: 14-160 mg/L (**x11**) TN: 0.6-2.1 mg/L (**x3.5**) TP: 0.056-0.2 mg/L (**x3.6**) NOx: 0.15-1.33 mg/L (**x8.8**) PO4: 0.011-0.038 mg/L (**x3.5**)

SUS POT

JAM RAP

APP

PAM MAT

PAT

CHO

RIM

SUS

POT

JAM

RAP

APP

PAM

MAT

PAT

CHO

RIM

Distribution by Tributary (Ratio)

(James and Rap: two rivers <16:1)

9

(James: the only river <16:1)

Summary (Patterns by Tributaries)

- The three largest tributaries (SUS, POT, and JAM) represent > 90% of total flow and total load.
- Average concentration is more variable for SS (x11) and NOx (x8.8) than the other species (x3-x4).
- NOx is a major fraction of TN in MD rivers but a minor fraction in VA rivers; PO4 is consistently a minor fraction of TP in MD and VA rivers.
- For both TN:TP and NOx:PO4 molar ratios, Susquehanna is the only river that exceeds the RIM average; James is the only river that is < 16:1.

Distribution by Season (% Load)

Distribution by Season (FWC)

Distribution by Season (Ratio)

Summary (Patterns by Seasons)

- Contributions of load by the four seasons are generally similar to their contributions of flow.
- Average seasonal concentration is at the highest in Sep-Nov (SS, TN, TP, PO4) and Dec-Feb (TN, NOx).
- NOx is a major fraction of TN in all four seasons, whereas PO4 is consistently a minor fraction of TP.
- For both TN:TP and NOx:PO4 molar ratios, all four seasons are > 16:1.

Distribution by Flow (% Load)

Distribution by Flow (FWC)

Distribution by Flow (Ratio)

Summary (Patterns by Flow Quantiles)

- Q4 represents 58% of flow among four quantiles.
 Q4 represents a similar % for TN, NOx, and PO4 but a much higher % for SS (91%) and TP (77%).
- Average flow-weighted concentration is similar among the four flow quantiles for TN, NOx, and PO4; it is much higher in Q4 than the other quantiles for SS and TP.
- NOx is a major fraction of TN in all four flow quantiles, whereas PO4 is a minor fraction of TP.
- For both TN:TP and NOx:PO4 molar ratios, all four flow quantiles are > 16:1.

Part II

Explore the characteristics of riverine loads:

- <u>By species</u>: SS, TN, NOx, TP, PO4
 - 9 major tributaries
 - 4 seasons
 - 4 discharge quantiles

Explore the temporal trends of riverine loads:

• <u>By species</u>: SS, TN, NOx, TP, PO4

Flow-normalized Estimates (w/ TIME)

- * Focused on the RIM watersheds (nontidal) in 1985-2016
- * Used USGS R workspaces by Moyer et al. (2017)

NTCBW Load = Sum of Loads at 9 RIM Stations

Trend - TP, PO4, TP-PO4

Trend - TN, NOx, TN-NOx

Trend - Ratio

Summary (Long-term Trends)

- Sediment and particulate nutrients loads from the NTCBW have risen since ~1995 – largely driven by Susquehanna trends.
- Dissolved nutrients loads from the NTCBW have declined in general – suggesting effectiveness of management (e.g., WWTP upgrades, Clean Air Act).
- NOx is a major fraction of TN in all years, whereas PO4 is always a minor fraction of TP.
- TN:TP and NOx:PO4 molar ratios are > 16:1 in all years, but TN:TP ratios have declined in recent years due to opposite trends in TN and TP – potentials for changes in nutrient limitation in the downstream estuaries.

THANK YOU!

- The largest estuary in North America;
- 64,000 mi² watershed -- Washington,
 D.C. and parts of six states (MD, VA,
 WV, DE, PA, NY);
- 14:1 land-to-water ratio, the largest of any coastal water body in the world;
- N, P, SS reduction enforced by the 2010 Chesapeake Bay TMDL;
- Many major and minor tributaries, with >90% of load from the 9 major rivers and ~60% of that from Susquehanna River;
- River loads estimated and reported using a statistical tool called **WRTDS**.

WRTDS: Load Estimation

WRTDS (Hirsch *et al.*, 2010) [Weighted Regressions on Time, Discharge, and Season]

 $ln(C) = \beta_0 + \beta_1 t + \beta_2 ln(Q) + \beta_3 sin(2\pi t) + \beta_4 cos(2\pi t) + \varepsilon$

- One single model (coefficient set) for each day of estimation;
- No assumption on fixed C-Q relations over time or season;
- Better model performance;
- Adopted in a range of studies, including Chesapeake, Great Lakes, Mississippi, Baltic Sea.

For the latest load estimates, see Moyer et al. (2017); https://doi.org/10.5066/F7RR1X68.

Method: WRTDS

Method: WRTDS

29

WRTDS Model Results

NTCBW SS Load = Sum of Loads at 9 RIM Stations

NTCBW TP, PP, DP

NTCBW TN, PN, DN

NTCBW Annual Trends

Zhang, Brady, Boynton, and Ball, JAWRA, 2015 Zhang and Blomquist, STOTEN, 2018

Tributary SS

Zhang, Brady, Boynton, and Ball, JAWRA, 2015

Tributary TP

Zhang, Brady, Boynton, and Ball, JAWRA, 2015

Tributary TN

Zhang, Brady, Boynton, and Ball, JAWRA, 2015

37

Tributary TN:TP Molar Ratio

