STAC CHESAPEAKE BAY MICROPLASTICS WORKSHOP April 24 - 25, 2019

MICROPLASTICS IN THE CHESAPEAKE BAY

LANCE YONKOS

DEPARTMENT OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY UNIVERSITY OF MARYLAND - COLLEGE PARK

Supported by NOAA – funded by the National Marine Sanctuary Foundation

Study tested the hypothesis that microplastics would be more abundant in proximity to urban sources

Microplastics in Four Estuarine Rivers in the Chesapeake Bay, U.S.A. Lance T. Yonkos,^{*,†,‡} Elizabeth A. Friedel,[‡] Ana C. Perez-Reyes,[†] Sutapa Ghosal,[§] and Courtney D. Arthur^{//,⊥, ∇}

[†]Department of Environmental Science and Technology, University of Maryland, College Park, Maryland 20742, United States [‡]Wye Research and Education Center, University of Maryland, Queenstown, Maryland 21658, United States [§]Environmental Health Laboratory, California Department of Public Health, Richmond, California 94804-6403, United States [#]Marine Debris Program, National Oceanic and Atmospheric Administration, Silver Spring, Maryland 20910, United States [⊥]I.M. Systems Group, Rockville, Maryland 20852, United States

* Supporting Information

ABSTRACT: Once believed to degrade into simple compounds, increasing evidence suggests plastics entering the environment are mechanically, photochemically, and/or biologically degraded to the extent that they become imperceptible to the naked eye yet are not significantly reduced in total mass. Thus, more and smaller plastics particles, termed microplastics, reside in the environment and are now a contaminant category of concern. The current study tested the hypotheses that microplastics concentration would be higher in proximity to urban sources, and vary temporally in response to weather phenomena such as storm events. Triplicate surface water samples were collected approximately monthly between July and December 2011 from four estuarine tributaries within the Chesapeake Bay, U.S.A. using a manta net to capture

appropriately sized microplastics (operationally defined as 0.3-5.0 mm). Selected sites have watersheds with broadly divergent land use characteristics (e.g., proportion urban/suburban, agricultural and/or forested) and wide ranging population densities. Microplastics were found in all but one of 60 samples, with concentrations ranging over 3 orders of magnitude (<1.0 to >560 g/ km²). Concentrations demonstrated statistically significant positive correlations with population density and proportion of urban/suburban development within watersheds. The greatest microplastics concentrations also occurred at three of four sites shortly after major rain events.

Sites had watersheds with broadly divergent land-use characteristics (e.g., urban/suburban, agricultural and/or forested) and wide ranging population densities

Table 1. Characteristics of Watersheds Proximate to Chesapeake Bay Surface Waters Sampled for Microplastics between June and December 2011^a

watershed characteristics	Patapsco River	Magothy River	Rhode River	Corsica River
population	899 000	32350	4300	3500
watershed area (km ²)	1637	92	67	97
tidal river/bay area (km²)	123	21.8	12.8	5.6
population density (persons/km ²)	550	351	64	36
total developed (%)	54	59	12	13.5
urban/industrial (%)	28	5	0	3.1
suburban/residential (%)	26	54	12	10.4
agricultural/pasture (%)	18	0.5	16	60.4
forested (%)b	17	32	68	24.4

A Surface water samples were collected approximately monthly between July and Dec. 2011 using a manta net (0.3-5.0 mm)

B Labile organics were dissolved with 30% hydrogen peroxide

C Hypersaline brine solution (300ppt) allowed density separation and visual sorting plastics

Microplastics were found in all but one of 60 samples

Abundance was highly variable within and across sites and sample dates

Abundances were significantly higher in Patapsco and Magothy samples compared to Rhode and Corsica samples

Highest microplastics abundances occurred several weeks after hurricane *Irene* and tropical storm *Lee*

Not statistically significant but suggest relationship to runoff

Concentrations correlated positively with:

- Population density
- > Imperviousness
- > Urban/suburban development
- Inversely with % agricultural / forested land-use
 No big surprises – human activities are clearly the

sources

Some notable limitations

Surface water samples collected by <u>manta net</u>

- Only reflects buoyant material from top ~15 cm of water column
- Only includes particles > 300 μm

Digestion with <u>H₂O₂</u> might have compromised some materials

- Mass is reduced
- Pieces <u>fragment</u> during processing
- Fibers identified as third most abundant category behind films and particles
 - newer studies tend to indicate fibers dominate total MP

Some notable limitations

Limited FT-IR confirmation of visual sample sorting

- Only 10 items validated (all were polymers!)
- All were ≥ 1.0 mm
- Smaller items not addressed

Small study

- Only four locations
- Moderate # of samples

Data approaching 8 years old

Samples collected 2011

Several new research efforts underway

Abundance and Variety of Microplastics in Surface Waters, Sediments, and Oysters

- 2-year MD Sea Grant funded project
- Investigates MP abundance in relation to land-use practices
 - Urban Patapsco River
 - Suburban Severn River
 - Agricultural Choptank River
 - Isolated Honga / Fishing Bay
- Three stations / system

Several new research efforts underway

Abundance and Variety of Microplastics in Surface Waters, Sediments, and Oysters

- At each station water samples collected at <u>surface</u> and ~ 15 cm above the <u>bottom</u>
 - 250 L replicate samples collected onto 100 μm sieves
 - 20 L replicate samples collected for capture on 1 µm glass-fibre filters
- Oysters collected by MD DNR during fall survey or from CBF sanctuaries
 - 3 4 reefs / system
 - 12 oysters / reef
 - + 12 for 3-d depuration study

Several new research efforts underway

Abundance and Variety of Microplastics in Surface Waters Sediments, and Oysters

- Sediments will be collected from several locations within each system
 - Proximate to oysters reefs
 - Away from oyster reefs
- Baltimore Harbor sediment cores to be collected to 1 meter
 - Will compare to cores collected in 1980-81, sectioned to 2-cm increments and archived at CBL
 - Will match via lat/long samples along transect from Inner Harbor to river mouth
 - Fort Carroll site

Several new research efforts underway

Investigations in the Potomac & Anacostia

Several new research efforts underway

- Investigations in the Potomac & Anacostia
 - 1) Prevalence and effects of microplastics in freshwater worms
 - Small internal grant from UMD AGNR
 - Determine MP burdens in field-collected annelid worms across land use categories in Potomac and Anacostia Rivers
 - Assess potential detrimental effects of MP to worms
 - Laboratory feeding experiments using large (Lumbriculus variegatus) and small (Pristina leidyi) worm species
 - Tabulate ingestion / egestion rates
 - Measure effects: reduced survival / growth / reproduction / etc

Lumbriculus variegatus

Several new research efforts underway

- Investigations in the Potomac & Anacostia
 - 2) Mussels as Monitors for Microplastics
 - Unfunded, but:
 - participation of US FWS (intern support) and MD DNR (mussel expertise)
 - also UMD ENST intern support
 - also, coordination with Anacostia Watershed Society (mussels / volunteers)
 - Deploy caged mussels within Anacostia River and tributaries to investigate spatial / temporal relationships to MP abundance
 - Laboratory feeding experiments using several mussel species
 - Tabulate ingestion / egestion rates
 - Measure effects: reduced survival / growth / etc

QUESTIONS????

1

PHOTO CREDIT

Photo credits: Will Parson - Chesapeake Bay Program Multimedia Specialist http://www.chesapeakebay.net/blog/post/photo_essay_microplastics_in_the_chesapeake_bay