Preliminary Estimates of Future Climate Change Influence On Water Quality In Chesapeake Bay Using CH3D-ICM

STAC Workshop: Climate Change Modeling 2.0 September 24, 2018

Richard Tian, Carl Cerco, Lewis Linker and CBPO Modeling Team

Chesapeake Bay Program *Science, Restoration, Partnership*

Outline

- Improved sea level rise simulation
- Corrections to air to water heat flux inputs
- Updated nutrient loading from the watershed
- Refinements to open ocean boundary
- Preliminary results

Sea level rise simulation

ICM Meteorological Forcing for Heat Transfer From Air to Tidal Waters

Changes in river discharge and nutrient loading in the 2025 and 2050 climate change scenarios

From Gopal Bhatt

2050 salinity adjustment at the the ocean open boundary

- Constant salinity in vertical profile: +0.4 psu based on Hong and Shen, 2012, supported by Seba et al., 2016 for 2050.
- For 2025 0.14 psu (= 0.4 x 0.17/0.5)

Temperature adjustment at the open boundary

$$\Delta \mathbf{T}_{water} = \mathbf{1.0} \bullet \Delta \mathbf{T}_{air} \bullet \mathbf{T}_{water} / \mathbf{T}_{surface}$$

$$\Delta T_{water} = 0.6 \bullet \Delta T_{air} \bullet T_{water} / T_{surface}$$

Morrill et al 2014:

• An increase in water temperature of about 0.6-1.0°C for every 1°C increase in air temperature.

Surface

temperature difference between climate change scenarios and the base case, Station **CB4.3C**.

Surface water T change under 2025 and 2050 CC

T and ΔT profile at CB4.3C under 2025 CCC

Monthly air T change and surface T simulation at CB4.3C

Hypoxia volume (<1 mg/l) in summer (Jun-Sep) 1991-2000 in CB4MH

Temperature effects

- Dissolved oxygen solubility: a 0.9 °C increase in temperature decreases dissolved oxygen solubility by 0.13 mg/l, or 1.7%.
- Biological rates: increase 6% over 0.9 °C (Q₁₀=2)
- Stratification (physics)

Sensitivity analysis of T modified DOsaturation and biological rate and stratification on water quality, CB4MH, deep channel

Base = Beta 2 Calibration. SLR = 0.5m Sea Level Rise Scenario representing relative Chesapeake sea level riser from 1995 to 2050. Units in mean cubic meters per second (m³/s) for summer 1993 to 1995 hydrodynamics.

Estimated DO water quality attainment in the Deep Channel CB4MH under the WIP condition

Conclusions:

- Temperature is the most sensitive variable in controlling hypoxia under estimated 2025 and 2050 climate change conditions, followed by sea level rise and nutrient loading.
- Increased temperature increases hypoxia whereas sea level rise improves DO in the Deep Channel, with the combined effect of an increase in 1.8% non-attainment in CB4 Deep Channel under the WIP condition with estimated 2025 future climate risk.
- Sea level rise magnitude: linear interpolation for 2035 and 2045; Waiting for final recommendation from Climate Change Resiliency WG.
- Investigation of air to water factor for temperature at the open ocean boundary ongoing.

Annex

ICPP AR5 2014

	AND global fileal	AND global mean sea level (m) micrease projections[7							
		2046–2065	2081–2100						
1	Scenario	Mean and	Mean and						
		likely range	likely range						
	RCP2.6	0.24 (0.17 to 0.32)	0.40 (0.26 to 0.55)						
	RCP4.5	0.26 (0.19 to 0.33)	0.47 (0.32 to 0.63)						
	RCP6.0	0.25 (0.18 to 0.32)	0.48 (0.33 to 0.63)						
	RCP8.5	0.30 (0.22 to 0.38)	0.63 (0.45 to 0.82)						

APE global mean cap loval (m) increase projections[7]

AR5 global warming increase (°C) projections[7]							
	2046–2065	2081–2100					
Scopario	Mean and	Mean and					
Scenario	likely range	likely range					
RCP2.6	1.0 (0.4 to 1.6)	1.0 (0.3 to 1.7)					
RCP4.5	1.4 (0.9 to 2.0)	1.8 (1.1 to 2.6)					
RCP6.0	1.3 (0.8 to 1.8)	2.2 (1.4 to 3.1)					
RCP8.5	2.0 (1.4 to 2.6)	3.7 (2.6 to 4.8)					

Base = Beta 4 TMDL SLR = 0.5m Sea Level Rise Scenario representing relative Chesapeake sea level rise from 1995 to 2050. Units in mean kg DO per second (m^3/s) for summer ()Jun-Sept) 1993 to 1995; NBCC: No Boundary Change₂

Changes in surface T simulation by alter open boundary from 0.6 to 1 times of ΔT_{air}

Open boundary has more influence in deeper layer than in the surface

18 stations along the main stem were analyzed

DO saturation as a function of temperature (Garcia and Gordon, 1992)

DO saturation at 20 psu

Effect of temperature increase on biological rates

$$\mathbf{a}_{res} = \alpha \boldsymbol{B} \boldsymbol{e}^{\boldsymbol{k}(T-Tr)}$$

a_{res}: Respiration or remineralization rate; B: Biomass;
Tr: Reference temperature; α: rate at reference temperature;
k: Exponential coefficient of temperature effect (0.069; Q₁₀=2)

Irby et al. 2018: Q₁₀=2.1

Londas et al., 2002. Microbial processes and temperature in Chesapeake Bay: tial scatter in the data. Pelagic microbial rate processes (e.g. phytoplankton production, respiration, bacterial productivity) showed a remarkably constrained range of Q_{10} values from 1.7 to 3.4. The one notable exception to this was nitrogen uptake in the North and Mid Bay, which exhibited Q_{10} values <1.0. Proxies for phytoplankton biomass (e.g. chlorophyll) were largely independent of temperature while bacterial abundance was significantly related to temperature and was found to have a Q_{10} of 1.88.

Air T at the Patuxent River Station 1985-2017

Estimate on water quality attainment in the Deep Channel Designated Use

Scenari	name	Base	2025SL	2025Flo	2025He	2025All	2050SL	2050Flo	2050He	2050All	WIP2	WIP2_2	WIP2_2
0			R_17cm	w	at		R_50cm	w	at			025	050
Nitroge													
n	loading	325TN	325TN	333TN	325TN	333TN	325TN	352TN	325TN	352TN	195TN	200TN	211TN
Phosph	loading	21.9TP	21.9TP	22.6TP	21.9TP	22.6TP	21.9TP	25.3TP	21.9TP	25.3TP	13.7TP	14.1TP	15.8TP
СВЗМН	MD	7.02%	6.50%	7.56%	9.00%	8.41%	4.41%	8.58%	10.91%	9.20%	0.00%	0.00%	0.00%
CB4MH	MD	44.76 %	42.07%	45.51%	47.66 %	46.4 4%	36.4 5%	48.27 %	51.11%	47.71%	5.02%	6.80 %	9.61%
CB5MH_	MD	20.68%	18.39 %	20.58 %	22.04%	21.74 %	15.67%	23.05%	24.54%	23.00%	0.00%	0.00%	0.00%
CB5MH_	VA	4.03%	2.65%	4.63 %	6.16%	5.39%	0.48%	7.66%	8.74 %	6.97 %	0.00%	0.00%	0.00%
POTMH_	MD	15.47%	13.56%	15.68 %	17.21%	17.06 %	10.32%	17.16 %	19.39%	18.77 %	0.00%	0.00%	0.00%
RPPMH	VA	13.33%	16.00%	16.34 %	20.42%	18.15%	14.40%	20.82%	24.57%	27.14%	0.00%	0.00%	0.00%
ELIPH	VA	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
CHSMH	MD	11.24%	17.08%	11.83%	12.84%	11.81%	14.53%	13.67%	16.18%	14.26%	0.00%	0.01%	1.19%
EASMH	MD	17.95%	17.20%	18.93%	20.54%	18.91%	14.72%	20.56%	22.64%	18.55%	5.62%	6.38 %	6.45%

Diagnosis on Climate Change Scenarios, CB4, average 1991-2000

GPP (g/m²/day)

Resp_ave (g/m³/day)

CL_OW (ug/l)

