Simulating Impacts of Climate Change on the Estuary

1. Comparison of existing climate change simulation results

- What are the largest discrepancies and how can they be remedied before 2019?

2. Next generation estuarine model

- What is needed to extend climate change simulations 2050?
- What needs to be done before 2025? After 2025?

3. Uncertainty

- How can model uncertainty be quantified?
- How can confidence/uncertainty be communicated to stakeholders?

4. STAC Synthesis

- What are the most critical needs for synthesis and research?

Recommendations for shortterm WQSTM analyses

1. Examine model parameterizations – temperature-dependence:

- Revise WQSTM temperature parameterizations
 - → Modify growth curve for phytoplankton (exponential rather than flattening; should not change calibration too much, because only changing impact of very higher temperatures)

 \rightarrow Also examine T-dependent mortality/grazing/remineralization terms

2. Examine forcing – wind:

• M. Herrmann has provided the CBP with future winds; how do these (minor) changes in winds impact hypoxia in WQSTM?

→ weaker winds? Small change in direction?

ightarrow run scenario with delta change in winds

3. Examine conflicting results – SLR:

- Why are we getting opposite SLR results?
 - ightarrow Same result with and without reduced nutrients
 - ightarrow Is this a water quality discrepancy or a hydrodynamic discrepancy?

Recommendations for medium-term analyses

Medium term

- Conduct rigorous multiple model comparison and skill assessment (fit-to-purpose) over historical time period over which we have data (1985-2018)
 - → Will likely provide additional confidence in modeling system

Recommendations for long-term analyses (Important modeling issues that need to be examined for next generation model)

Physical model structure:

- Carefully add high resolution where we need it (not where we don't)
 → unstructured grid is required
- Wetting/drying (expanding coastline)
- Include spectral wave model (to get shoreline erosion and sediment transport)
- Moving boundary condition offshore
 - \rightarrow Relax to observations where we have them at Bay mouth
 - → Re-examine outer boundary conditions obtain from MAB modeling efforts (Note not clear yet if MAB is increasing or decreasing salinity (right at latitude between reducing and increasing S)

Recommendations for long-term analyses (Important modeling issues that need to be examined for next generation model)

Model WQ parameterizations:

- Improve temperature-dependent and salinity-dependent parameterizations
- Investigate invasive species (with scenario runs)
- Consider potential for new HAB species
- Examine changing stoichiometric relationships (e.g. N:P ratios)
- Improved marsh/wetland models (account for changes in Zostera)
- Consider adding zooplankton back into WQ model (perhaps single group)
- Acidification (critical for oysters)

Recommendations for long-term analyses (Important modeling issues that need to be examined for next generation model)

Model forcing:

- Look at future atmospheric forcing; more low pressure systems?
- Examine impact of change in tide range (15% change?)

Model impacts:

- Look at things other than hypoxia examine impact on water clarity, chlorophyll, productivity....
- Look at impacts on higher trophic levels

Q3: Uncertainty

How can model uncertainty be quantified?

- Ensemble of different estuarine models
- Examining different parameters and formulations
- Examining different GCMs and downscaling methods
- Emission scenario less important by 2025 and 2050

How can uncertainty be communicated to stakeholders? (Requirement of providing one number to managers...)

How much risk are stakeholders willing to take?

- If OK with 10% risk that this will happen, then..... x
- If OK with 30% risk that this will happen, then..... y
- If OK with 50% risk that this will happen, then..... z

We can really provide "one number" only if managers tell us what amount of risk they want

Q4: STAC Synthesis

Resolution of SLR discrepancy!

• Why are we getting opposite SLR results?

 \rightarrow Same result with and without reduced nutrients

→ Is this a water quality discrepancy or a hydrodynamic discrepancy?

- → Absolutely critical
- → Something we can do within 3-8 months