

Using Quantified Ecosystem Services to Interface with and Engage the Public

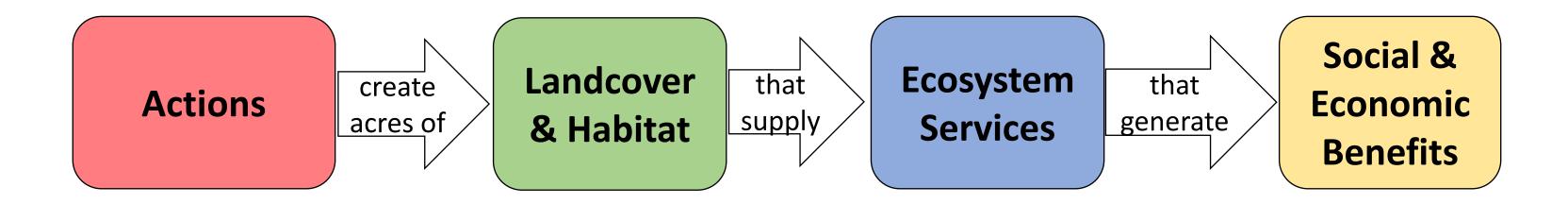
Susan Yee EPA Office of Research & Development

09/10/2024

Disclaimer: The views expressed in this presentation are those of the author(s) and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency.

When considering & implementing restoration projects,

Resource managers and communities need methods to:



Ecosystem Services as a Bridge

• Actions to restore, conserve, or protect landcover & habitat can be linked to social and economic benefits to people and communities through ecosystem services

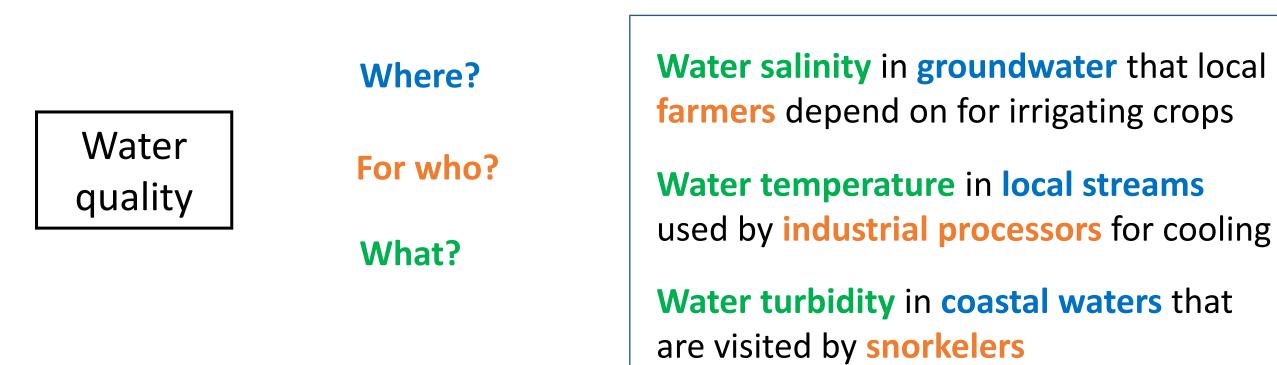
What are Ecosystem Services?

"[biophysical] components of nature, directly enjoyed, consumed, or used to yield human well-being" (Boyd & Banzhaf 2007)

Ecological Attribute

Charismatic bird species

What?


Dewitt et al. 2020

4

Why a Beneficiary-focused Perspective?

- Clarify what is meant and reduce ambiguity
- Directly relevant to stakeholders
- Helps to ensure key stakeholders or benefits aren't overlooked

Review of Planning Documents

"gazing at stunning coastal sunsets"

"fibers from the area used to temper pottery"

"protect rare and endangered species in the estuary"

"collect mushrooms along the streambank"

> "rich agricultural soils preserved for farming"

"open spaces for public use"

"the community depends on natural systems for water resources"

"sailing and windsurfing"

"pollination of agricultural plants"

"enjoy migratory songbirds near the water" "a panoramic view of the bay from the observation tower"

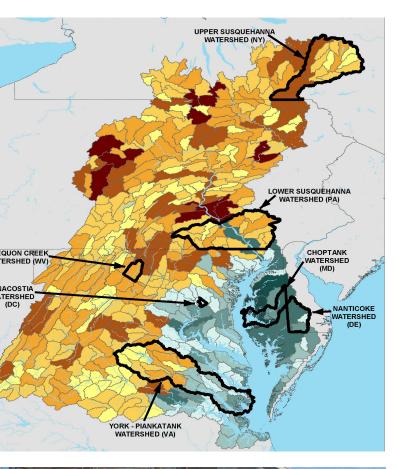
> "protecting the air our residents breathe"

"the waters provide shellfish for commercial fisheries"

"a natural lab for students to learn about the estuary"

<u>Yee et al. 2019</u>

Review of Planning Documents

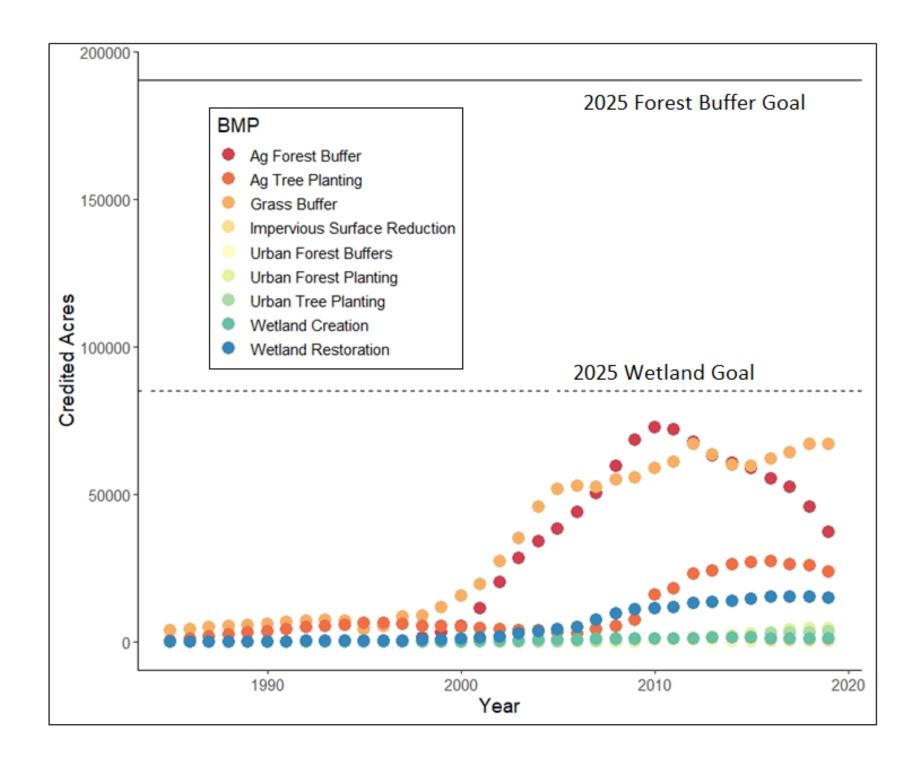

- Illustrates management programs and communities are implicitly considering ecosystem services in planning
- Yet... widespread implementation of ecosystem services assessments is still limited
 - Perceived as too technical or nuanced to convey to stakeholders
 - Perceived as requiring economic or monetary valuation (special expertise)
 - Management & restoration fall back on ecological proxies (habitat cover, water quality) - "easy wins"
- Reinforces that approaches and tools are still needed to simplify ecosystem services assessment

7

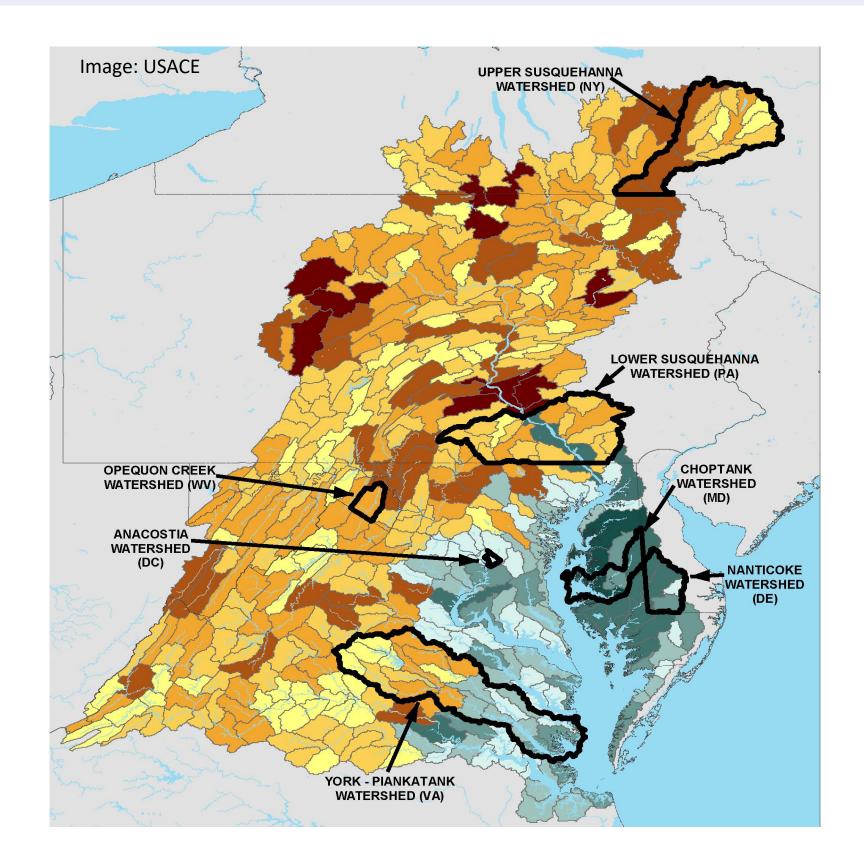
Research Program

- Provide frameworks, tools, and approaches to link restored biological condition to social and economic benefits via ecosystem services
- Chesapeake Bay RESES motivate implementation of conservation BMPs in upper watershed
- Crisfield, MD evaluate nature-based solutions for storm-related flooding

Research Approach


Step 1. Clarify scope for the project, and how/where ecosystem services play a role Step 2. Identify stakeholder objectives and which are ecosystem services Step 3. Identify potential <u>metrics</u> to measure ecosystem services Step 4. Identify management actions Step 5. Apply data/models to <u>compare</u> ecosystem services change under different actions Step 6. Communicate links between actions and ecosystem services to support decisions

Case Study 1: Chesapeake Bay RESES


- Some BMPs in the Watershed Agreement are behind on implementation – e.g. wetlands and forest buffers
- Need to enhance stakeholder buyin of implementation of these practices, especially in headwater communities
- Want to be able to better communicate and quantify benefits associated with these practices, specifically beyond water quality

Case Study 1: Chesapeake Bay RESES

- Goal: Motivate implementation of Conservation & Restoration Related BMPs that are lagging, especially in upstream communities
- Quantify how BMPs may affect ecosystem services, particularly beyond sediment and nutrient reduction

Project Approach

- Identify priority ecosystem services and quantify how BMPs may affect them
- Communicate potential contributions of ecosystem services to Watershed Agreement Outcomes
- Build off existing tools like Co-Benefits Report and CAST

WATER QUALITY

SUSTAINABLE FISHERIES

CLIMATE RESILIENCY

HEALTHY WATERSHEDS

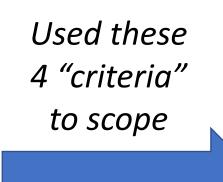
STEWARDSHIP

VITAL HABITATS

PUBLIC ACCESS

TOXIC CONTAMINANTS

ENVIRONMENTAL LITERACY


LAND CONSERVATION

Determine which BMPs to Focus on

Focus on BMPs that are:

- 1. Lagging in implementation
- 2. Relevant to upstream communities
- Have associated Watershed Agreement goals that have not been met
- 4. Related to habitat conservation or restoration

Scoped list of BMPs:

- Agricultural forest buffers
- Agricultural grass buffers
- Agricultural tree planting
- Agricultural cover crops
- Urban forest buffers
- Urban forest planting
- Urban tree planting
- Forest conservation
- Impervious surface reduction
- Wetland creation
- Wetland restoration

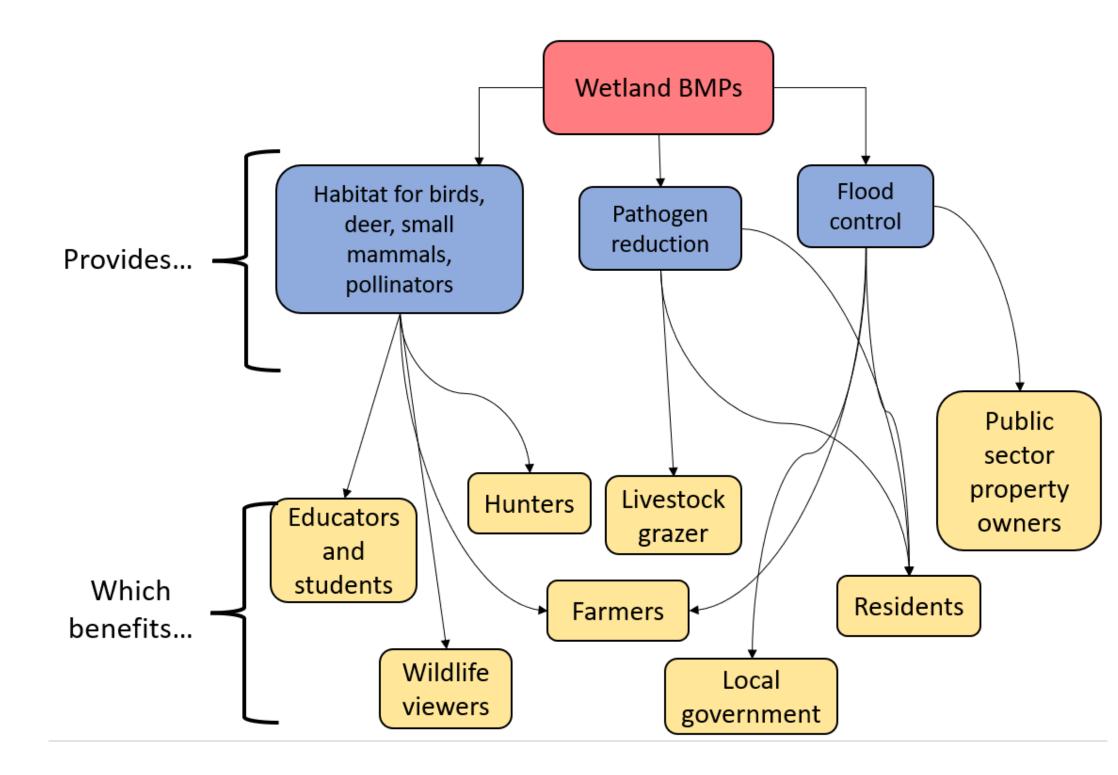
Identify Relevant Ecosystem Services

Who might benefit?

	Agricultural Processors	Farmers			
Agricultural	Livestock Grazers	Foresters			
	Aquaculturists				
	Private Drinking Water Plant Operators				
	Industrial Processors	Private Energy Generators			
Commercial /	Pharmaceutical and Food Sup	oplement Suppliers			
Industrial	Timber, Fiber, and Ornamental Extractors				
	Food Extractors	Fur / Hide Trappers and Hunters			
	Property Owner				
Government,	Municipal Drinking Water Pla	int Operators			
Municipal,	Public Energy Generators	Military / Coast Guard			
Residential	Residential & Nonresidential	Property Owners			
Humanity	All Humans				
Inchirational	Artists				
Inspirational	Spiritual/Ceremonial Participants, Participants of Celebration				
Learning	Researchers				
Learning	Educators and Students				
Non-Use	People Who Care - Option / E	Bequest			
1011-036	People Who Care - Existence				
	Anglers	Boaters			
Recreational	Waders/Swimmers/Divers	Hunters			
	Food Pickers/Gatherers	Experiencers/Viewers			
	Water Subsisters	Food/Medicinal Subsisters			
Subsistence	Timber/Fiber/Fur/Hide Subsisters				
	Building Material Subsisters				
Transportation	Transporters of Goods				
	Transporters of People				

What do they care about?

Atmosphere	Air quality	Wind st	trength	/s
Soil	Soil quantity	9	Soil qua	alit
Water	W	ater qua	lity	W
Fauna	Fauna commu Charism Pest predato	natic faur or/depree	าล	au
Flora	Flora commu Charismat	ic flora	Edib R Spiritua	Rar
Fungi	Fungal com Commercia	•		Ed un
Other Natural Components		iber ma eral/che material	mical c	ua qua
Composite (and	Site Appe	וגי	Sounds Phenoi	
Extreme Events)	Extreme Ev	rents	Ext	R re



Precipitation Sunlight Temperature speed Substrate quantity Substrate quality ity Vater quantity Water movement Medicinal fauna Keystone fauna auna **Pollinating fauna** Rare fauna Commercially important fauna ına //culturally important fauna Keystone flora flora Medicinal flora re flora Commercially important flora y/culturally important flora dible fungi Medicinal fungi Rare fungi Spiritually/culturally important fungi ngi ality **Fuel quantity** Fiber material quality antity Mineral/chemical quality uantity istic use, consumption (e.g. shells, acorns, honey) Scents Viewscapes ena (e.g. sunsets, northern lights, etc) **Ecological condition** Open space **Regulating Services** Wildfire Flooding eme weather events Earthquakes

Identify Relevant Ecosystem Services

- Use NESCS Plus to identify potential ecosystem services (ES)
- Mine Chesapeake Bay Program (CBP) documents and reports for ecosystem services to add to list
- Feedback from partners on priorities in their regions on anything missing

Identify Relevant Ecosystem Services

In total, review identified focal BMPs could provide 45 potential types of ecosystem services benefitting 46 different types of users

Best Management Practices

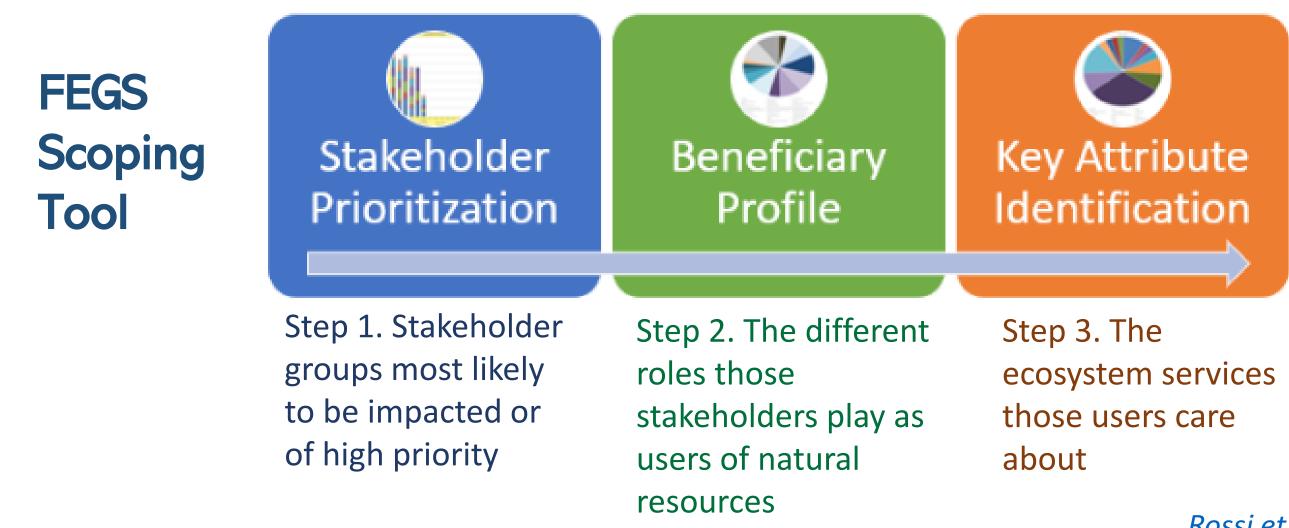
Agricultural forest buffers Agricultural grass buffers Agricultural tree planting Agricultural cover crops Urban forest buffers Urban forest planting Urban tree planting Forest conservation Impervious surface reduction Wetland creation Wetland restoration

Ecosystem Services

air pollutant removal carbon sequestration charismatic species richness brook trout presence striped bass presence commercially valuable trees open space for infrastructure open space for learning open space for spiritual practice open space for training green space habitat quality/size environment for ethical reasons environment for future uses resources for research erosion control deer population small mammal presence waterfowl presence blue crab presence oyster presence edible plants presence grasses for feed/grazing

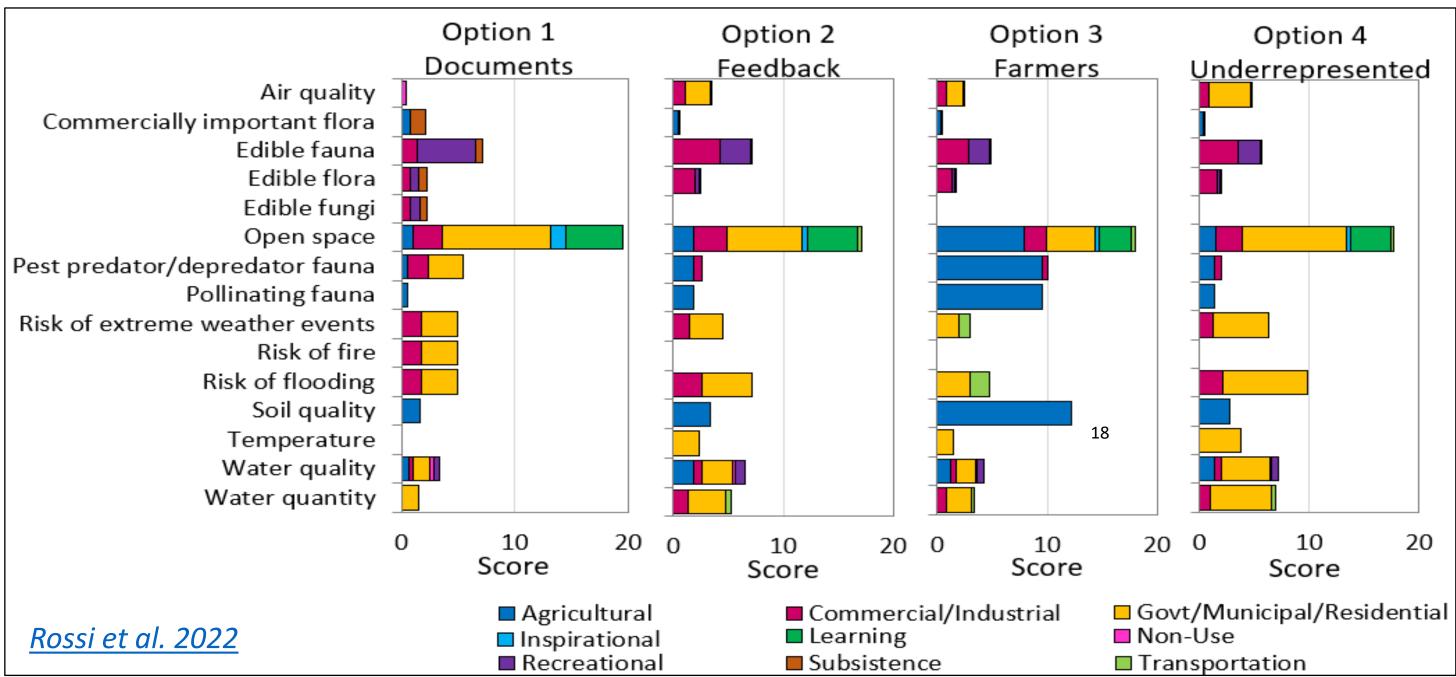
wood and paper products fungi presence fauna for medical uses flora for medical uses supply of depredators supply of pest predators mitigate pest risk supply of pollinators natural materials fire risk flood control high quality soil energy efficiency mitigate heat risk viewscapes ability to dilute and receive discharge clean water (nutrients) contaminant reduction pathogen reduction (from water) pathogen reduction (animal health) water clarity quantity of water

All Humans Residents Global citiz Anglers Aquacultur Artists Boaters, kar Educators & **Energy Ger** Experience Birder Wildlife Vie Camper Farmers Ag/Rural la Food & Me Food Extra Watermen Food Picker Foresters Fur/Hide Tr Hunters Industrial d


User Groups

	-
S	Irrigators
	Livestock grazers
zens	Military / Coast Guard
	Municipal/Private Drinking Water
rists	Local water authority
	Public wastewater
ayakers	People Who Care (Existence)
& Students	People Who Care (Option /Bequest)
nerators	Pharmaceutical/Supplement Suppliers
ers & Viewers	Public Sector Property Owners
	Local government
ewer	Researchers
	Residential Property Owners
	Low income/disadvantaged Residents
andowner	Renters
edical Subsisters	Resource dependent business
ctors	Restoration businesses
16	Urban businesses
ers & Gatherers	Recreation business
	Ceremonial/Celebration Participants
rappers/Hunters	Timber, Fiber, Fur/Hide Subsisters
	Timber, Fiber, Ornamental Extractors
dischargers	Waders, Swimmers, Divers
Ŭ	

Prioritize Most Relevant Ecosystem Services

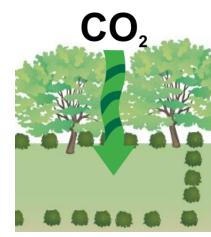

- Chesapeake Bay Scientific Technical and Reporting Team (STAR) and Local Government Advisory Committee (LGAC) partners asked to identify top 5 ecosystem services and users most relevant to their region or expertise
- Final Ecosystem Goods & Services (FEGS) Scoping Tool to assign importance weights

Prioritize Most Relevant Ecosystem Services

Explored different weighting options based on 1) documents, 2) partner rankings, 3) farmers as most likely to be impacted by BMPs, and 4) underrepresented/lowincome communities to address inclusivity and EJ goals

Quantify Ecosystem Services per acre of BMP

Each BMP associated with a CAST land cover class


 Identified or generated models to describe ES supply per acre of landcover Air Quality Air pollutant removal rates in urban and rural areas obtained from i-Tree and multiplied by acres of tree cover

Bird Diversity

Species area curves relate increasing acres of land cover type to potential bird species richness, obtained from USGS GAP

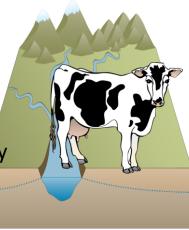
Carbon Sequestration

Average rates of burial of atmospheric carbon into soil (i.e., in support of mitigating climate change) by landcover type, obtained from **COMET-Planner** and literature review, multiplied by acres of landcover

Water Quantity (Stream Flow) CAST Hydrological Model

Pollination InVEST pollinator model to assign index of habitat suitability based on land cover, and characteristics of pollinators such as nesting and foraging distance

Open Space

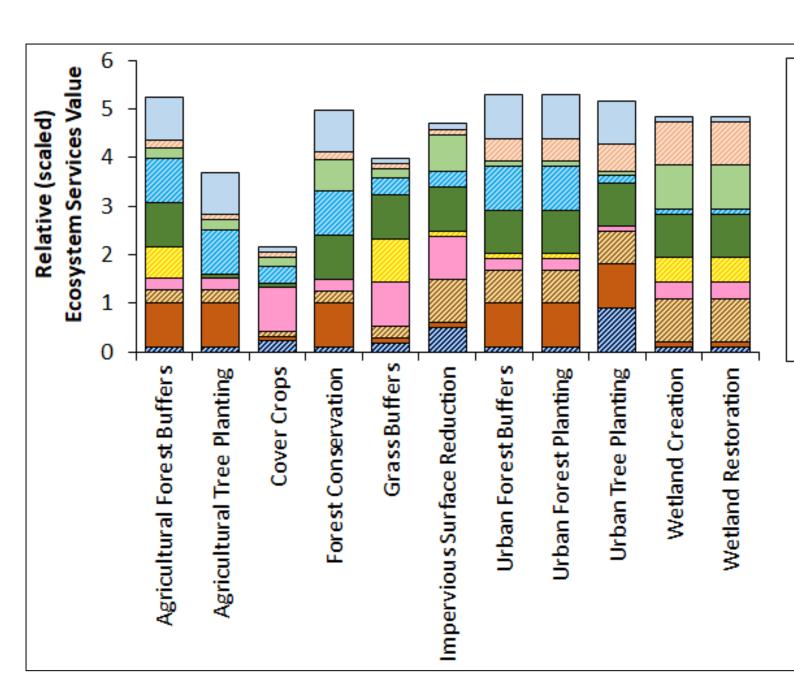

Acres of **landcover per capita** identified as wetland, tree canopy, shrubland, and low vegetation

https://ian.umces.edu/media-library

Heat Risk Reduction

Flood Control Curve number method based on landcover, soil type Statistical regressions to relate acres of tree canopy to summer air temperatures

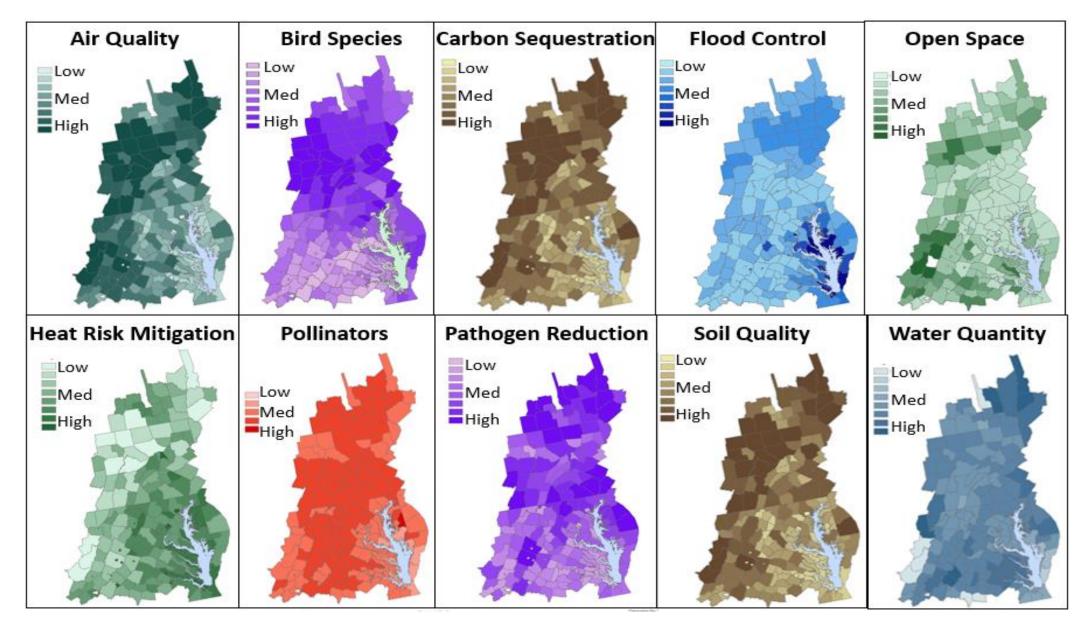
Pathogen Reduction Fecal indicator bacteria removal efficiencies obtained from literature review, multiplied by acres of landcover type


Soil Quality

Average carbon content of soil by landcover type, obtained from and literature review, multiplied by acres of landcover

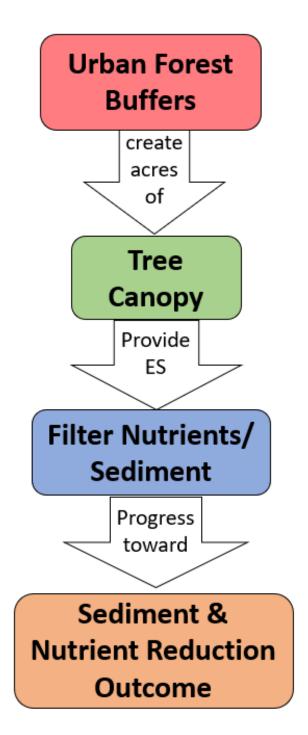
19

 A demonstration of lookup tables and models to layer ES predictions onto sediment/nutrient reductions in Chesapeake Bay Assessment Scenario Tool



Air quality

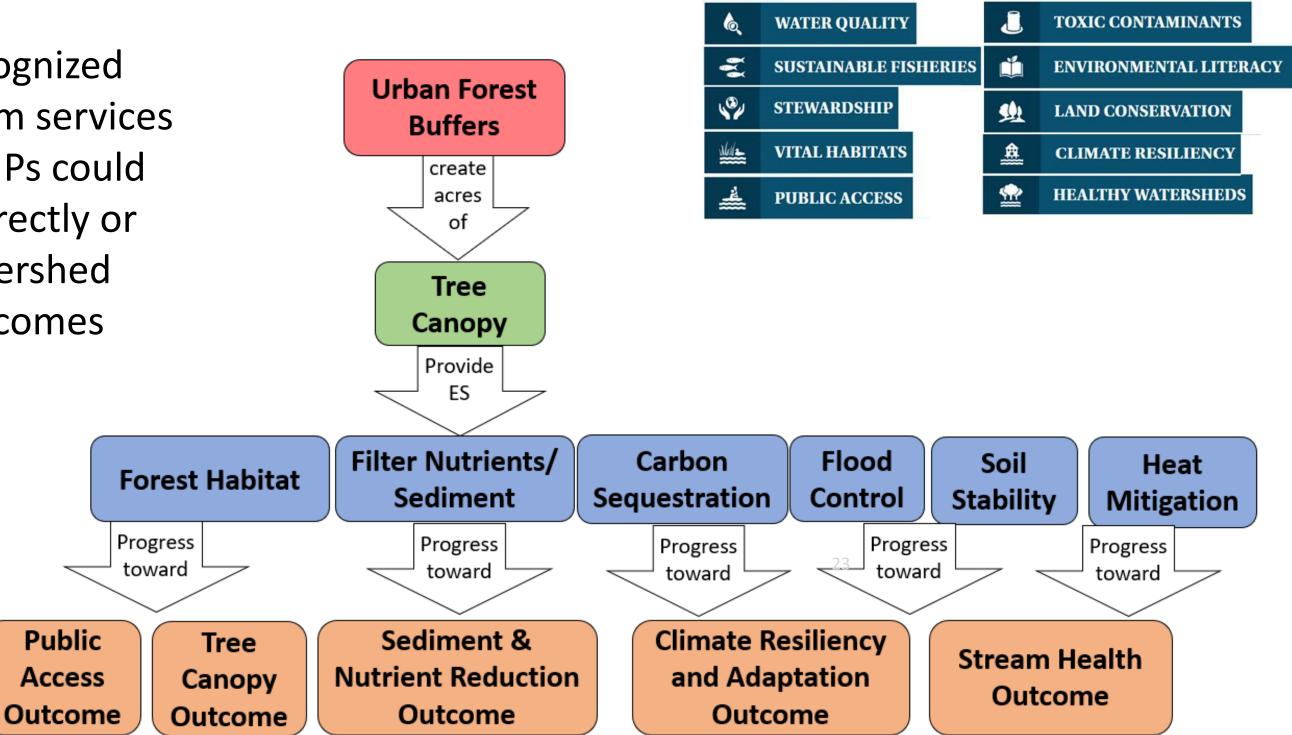
- Bird richness
- Carbon sequestration
- Flood control
- Open space
- Pathogen reduction
- Pollinator
- Soil quality
- Heat risk reduction
- Water quantity


- A demonstration of lookup tables and models to layer ES predictions onto sediment/nutrient reductions in Chesapeake Bay Assessment Scenario Tool
- Maps of current levels of ecosystem services

https://gis.chesapeakebay.net/targeting/

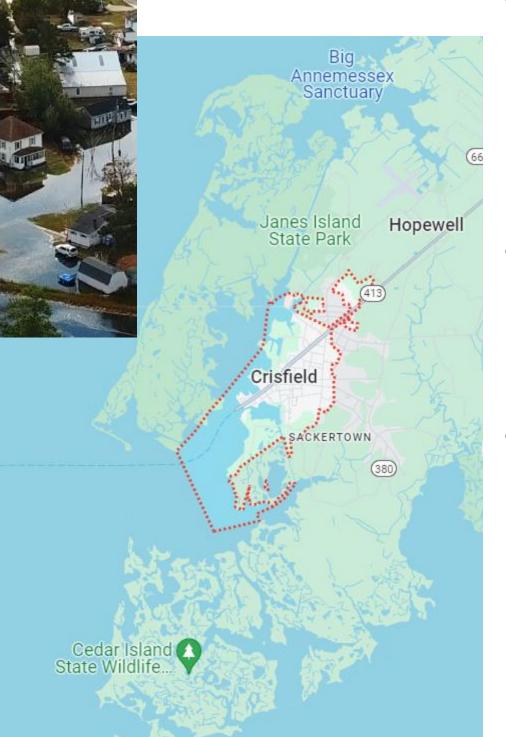
 Project also recognized where ecosystem services gained from BMPs could contribute (indirectly or directly) to Watershed Agreement Outcomes

https://cast.chesapeakebay.net/ecohealth/index


ATER QUALITY	J	TOXIC CONTAMINANTS
ISTAINABLE FISHERIES		ENVIRONMENTAL LITERACY
EWARDSHIP	<u>9</u>	LAND CONSERVATION
TAL HABITATS	A	CLIMATE RESILIENCY
IBLIC ACCESS		HEALTHY WATERSHEDS

22

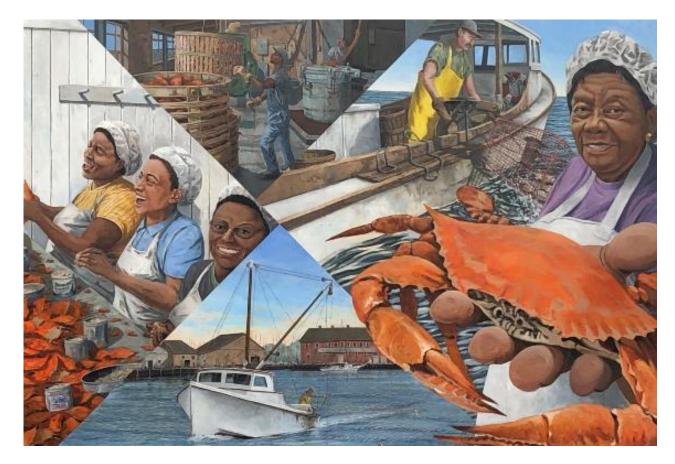
 Project also recognized where ecosystem services gained from BMPs could contribute (indirectly or directly) to Watershed Agreement Outcomes

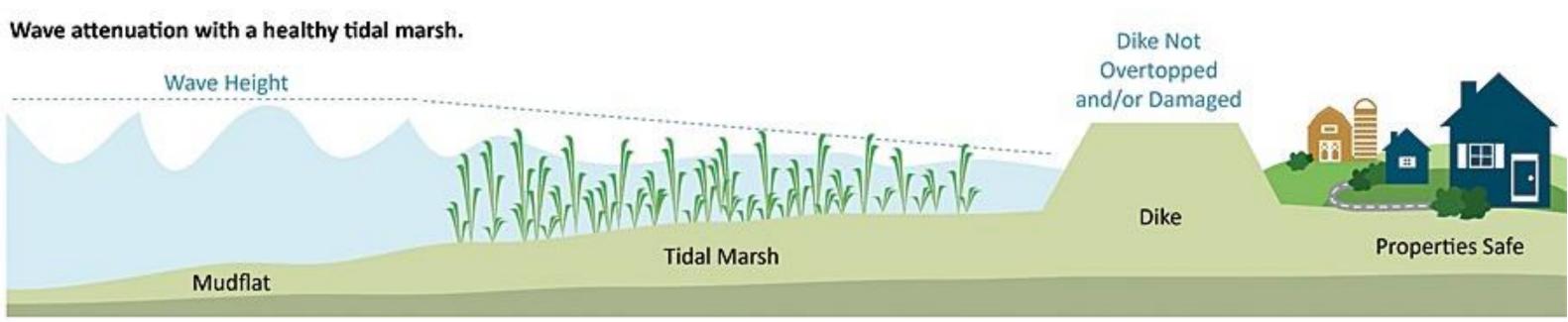


https://cast.chesapeakebay.net/ecohealth/index

Case Study 2: Storm Flooding in Crisfield, MD

- Climate challenges:
 - Tidal flooding
 - Storm flooding
 - Coastal erosion
- Opportunities for natural infrastructure: • Surrounded by salt marshes and seagrasses • Extensive existing and historical oyster reefs Nature interwoven with community
- resilience goals:


 - Commercial fisheries


• Flood-safe housing and resilient infrastructure Tourism and recreation tied to waterfront

Research Questions

- Can Nature Based Strategies (NBS) help protect Crisfield from storm surge and flooding?
- What are the social and economic co-benefits of potential NBS?

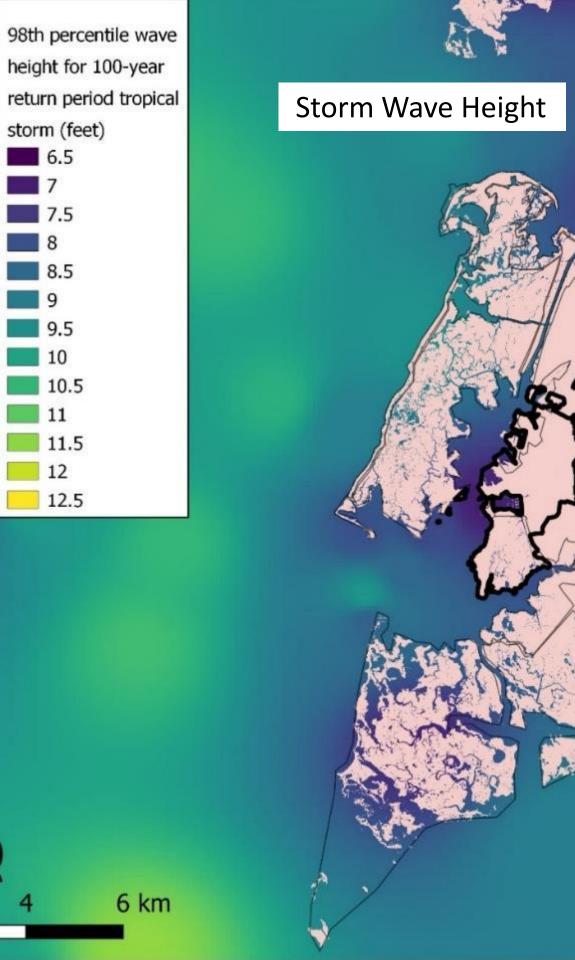
What kinds of NBS can help with Storm Surge?

Literature Review

- Success stories from locations similar to Crisfield
- Identify criteria associated with their success and conditions required for them to be successful
 - $\,\circ\,$ Shallow water
 - $\,\circ\,$ Land slope
 - Historic erosion
 - Wave energy
 - $\circ~$ Submerged vegetation
 - Substrate

Dune Restoration

Living Shorelines

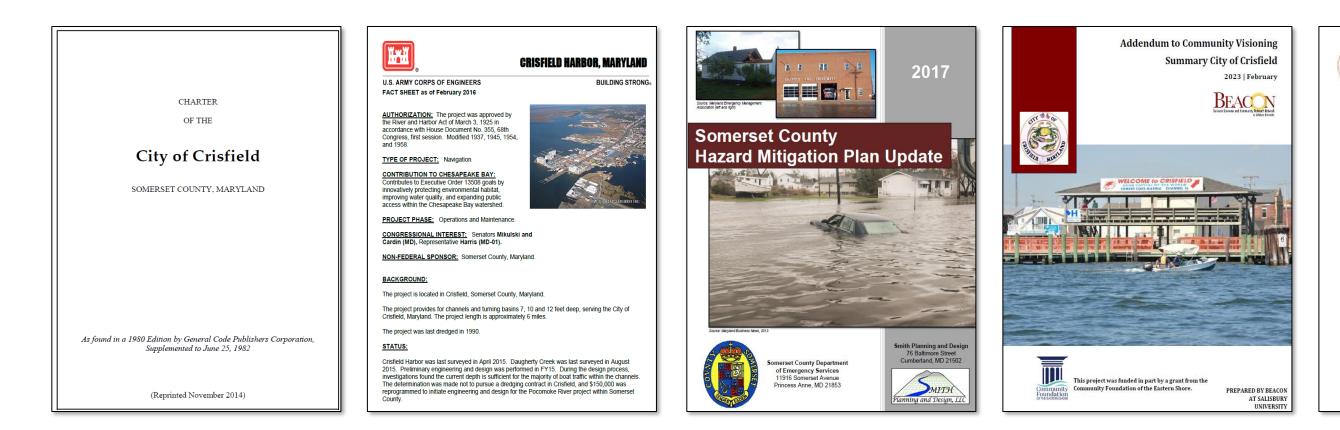


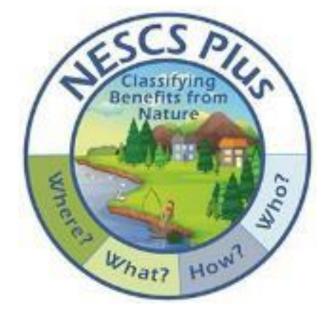
Salt Marsh Restoration

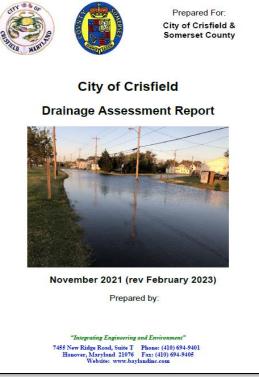
Artificial Reefs/ Living Breakwaters

Next steps

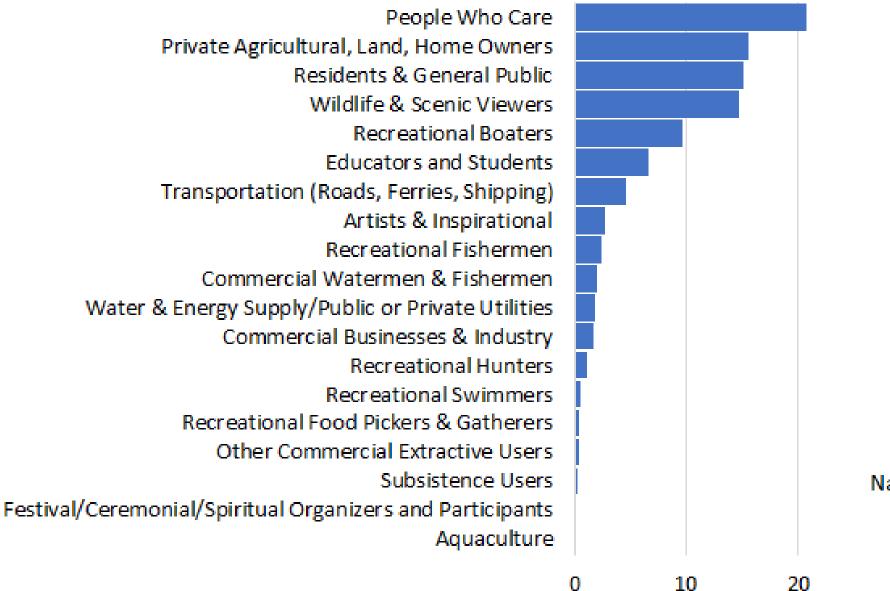
- Baseline storm surge attenuation modeling
 - Current existing natural conditions (2024) • "Do nothing" scenario by 2050 and 2100
- Calculate maximum wave and storm surge height reduction possible from selected NBS
 - Estimated attenuation when installed (2024) Attenuation by 2050 and 2100 (including)
 - sea level rise)
- Assess additional ecosystem services co-benefits possible from NBS

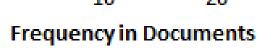



What Ecosystem Services Matter to Crisfield?


Review of Crisfield Planning and Management Documents

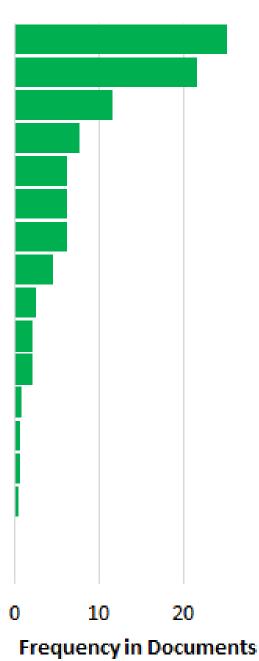
- Identified sentences mentioning i) coastal habitat, ii) type of user group, and iii) attributes they care about
- "Relative importance" based on frequency of mentions in documents


What Ecosystem Services Matter to Crisfield?


Who is Using or Benefitting from Coastal Habitats?

Aesthetics and Scenic Views **Ecological Function & Condition** Water Movement & Navigability Fish & Shellfish Water Availability & Quality Charismatic Fauna Open Space Blue Carbon Air Quality

Fauna Community & Rare/Endangered Species Buffering Flooding & Extreme Events Edible, Commercial, or Culturally Important Fauna Flora Community & Rare/Endangered Species Soil/Sediment Availability & Erosion Buffering Winds, Heat, & Weather Commercial or Culturally Important Flora


Natural Materials (Salt Hay, Timber, Driftwood, Shells)

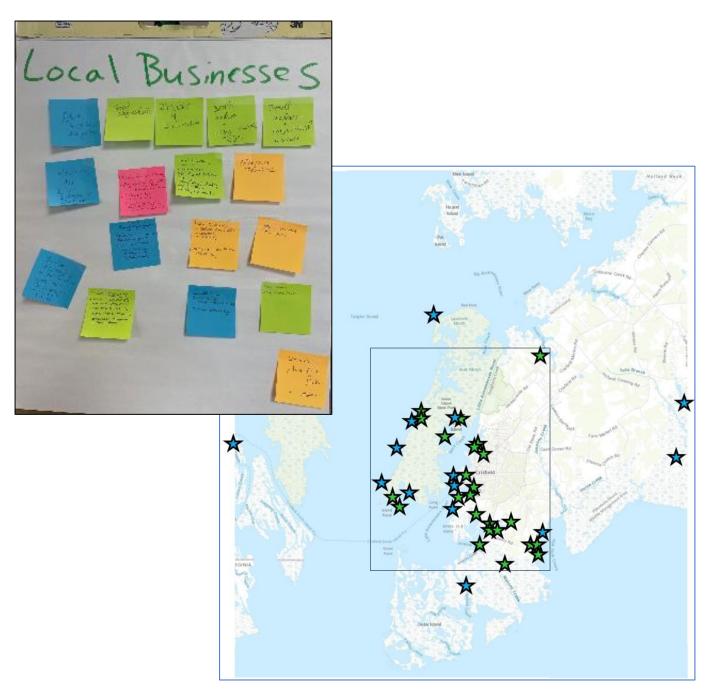
What Attributes do those Users Care about?

Stakeholder Engagement

Institutional Partners (Decision-Maker) Workshop April 19, 2024

	Option 1	Option 2	Option 3	Option 4
	Status Quo	Janes Island	Cedar Island	Little Annemessex
		Marsh	Marsh	Living Breakwaters
Criteria that EPA Suggested		Restoration	Restoration	
Effectiveness for Storm Surge & Wave				
Attenuation				
Wave height reduction				
Rates of coastal erosion				
Resilience (Risk of Failure, Lifespan)				
Social/Economic Benefits				
Fish/Oyster/Crab Abundance				
Charismatic or Other Important				
Birds/Mammals/Reptiles				
Native/Rare Plants				
Seagrass/Marsh (Area & Quality)				
Aesthetics/Viewscapes				
Navigable Water (Boating Conditions)				
Water Clarity				
Access for Recreation/Fishing/Education				
Fairness/Equitability of Benefits				

Additional Things identified by Meeting Participants


Tax Revenue spent on flooding vs. other stuff Restoring Crisfield to 'what it used to be' Whether NBS could help with drainage Availability of dredge material Impacts to navigability of the ferry path

Storm flooding as a deterrent to economic development Community cohesiveness (working together to solve flooding problem)

Stakeholder Engagement

Crisfield Public Meeting April 20, 2024

- Where and what are some of Crisfield's most important natural spaces?
- Who uses or cares about by Crisfield's coastal habitats and why?
- What are some attributes of coastal habitats that matter most to people?
- How have past coastal habitat changes affected people, and how might you like to see them change in the future?

Residents & Locals

Youth & Educators

Recreational Hunters

Artists & Festival Participants

Recreational Fishermen

Who might be impacted by NBS decisions?

Recreational Boaters

Local Businesses

Local Sources for Food

People Who Care (Conservation)

Watermen/Seafood Industry

Beachgoers & Swimmers

Public Property Owners & Users (Boardwalk, Library)

Septic System Users

Ferry Service & Other Public Transportation

Bikers, Hikers, Scenic Viewers, Wildlife Viewers

Residents & Locals

Natural beauty Flood protection Food availability Protection from mold Recreational opportunities Air quality (salty, fresh air)

Recreational Fishermen

Target species for fishing Ecological condition *Invasive or nuisance species* Access to water

Youth & Educators

Natural beauty Access to natural open spaces Water access Ecological condition Fauna & Flora community Flood protection

Recreational Hunters

Natural beauty Access to natural open spaces Water access Huntable wildlife

Artists & Festival Participants Natural beauty Natural materials Fish & Shellfish (Seafood) Charismatic fauna

Recreational Boaters

Access to water Navigable water Natural beauty

People Who Care (Conservation)

Ecological condition Natural beauty Water quality Fauna & Flora community

Watermen/Seafood Industry

Fish & Shellfish (Seafood) Access to water Invasive or nuisance species

Local Businesses

What do they care

about?

Flood protection Natural beauty Natural materials Fish & Shellfish (Seafood)

Local Sources for Food Fish & Shellfish (Seafood)

Beachgoers & Swimmers Water access Water quality Invasive or nuisance species

Public Property Owners & Users (Boardwalk, Library)

Natural beauty Access to natural open spaces

Septic System Users Flood protection

Ferry Service & Other Public Transportation

Flood protection Navigable water Natural beauty Access to natural open spaces

Bikers, Hikers, Scenic Viewers, Wildlife Viewers

Natural beauty Access to natural open spaces Water access 33 Charismatic wildlife

17 Categories of Co-benefits

- That have the potential to resonate with a wide range of user groups That have the potential to be affected by NBS options
- That can be connected to broader Crisfield resilience goals: **Resilient** infrastructure Flood safe & affordable housing Business and job creation Enhanced recreation • Youth development Enhanced community spaces •

Attribute

Natural Beauty (& Cultural Resources)

Ecological Condition Scoping

FEGS

Tool

Species for Fishing/Seafood Industry

Species for Hunting

Water Movement & Navigability

Flora Community

Flood Protection

Water Access

Charismatic Fauna

Water Quality

Fauna Community

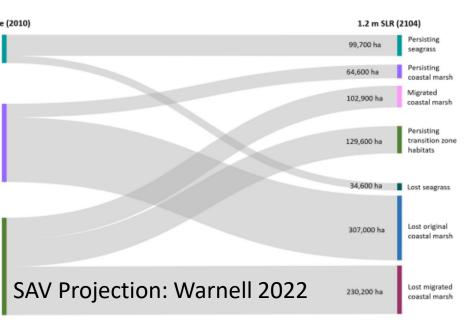
Mold Reduction

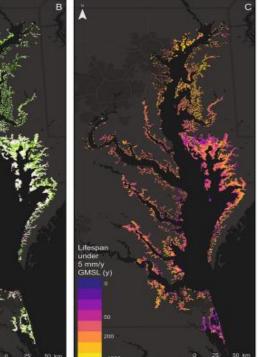
Natural Open Spaces

Natural Materials

Air Quality

Weather


Nuisance & Invasive Species


Attribute	Initial Plan for Analysis
Natural Beauty (& Cultural Resources)	Unimpeded view from coast/residence
	Marsh Unvegetated/Vegetated Ratio;
	Marsh lifespan;
Ecological Condition	Carbon storage/sequestration
Species for Fishing/Seafood Industry	Fish Habitat Suitability
	Wildlife habitat suitability
Species for Hunting	
Water Movement & Navigability	Wave heights in non-storm conditions
	Marsh Unvegetated/Vegetated Ratio;
Flora Community	SAV Distribution & Condition
Flood Protection Water Access Charismatic Fauna	Water height attenuation during storms Access and transportation by boats Wildlife habitat suitability
	Denitrification;
Water Quality	Water quality related to SAV
	Wildlife habitat suitability
Fauna Community	······································
Mold Reduction	Inferred benefit if waves attenuated
	Access for recreation or education;
Natural Open Spaces	Acres of coastal habitats
Natural Materials	
Air Quality	
Weather	
Nuisance & Invasive Species	

Baseline (2010) seag

Marsh UVVR: Ganju 2023

Attribute	Initial Plan for Analysis	Other potenti
		Index of 'beauty'; C
Natural Beauty (& Cultural Resources)	Unimpeded view from coast/residence	
	Marsh Unvegetated/Vegetated Ratio;	
	Marsh lifespan;	
Ecological Condition	Carbon storage/sequestration	
Species for Fishing/Seafood Industry	Fish Habitat Suitability	
	Wildlife habitat suitability	
Species for Hunting		
Water Movement & Navigability	Wave heights in non-storm conditions	
	Marsh Unvegetated/Vegetated Ratio;	
Flora Community	SAV Distribution & Condition	
		Indicators of flood re
		height; relative spatia
Flood Protection	Water height attenuation during storms	
Water Access	Access and transportation by boats	Water depth; Blocki
Charismatic Fauna	Wildlife habitat suitability	
	Denitrification;	
Water Quality	Water quality related to SAV	Water clarity
	Wildlife habitat suitability	
Fauna Community		
Mold Reduction	Inferred benefit if waves attenuated	
	Access for recreation or education;	
Natural Open Spaces	Acres of coastal habitats	
Natural Materials		
Air Quality		
Weather		
Nuisance & Invasive Species		

tial measures (if we can find models/data) Cultural resources (the stack) protected from erosion or storm damage;

> Ecological condition index Fish; Crabs; Oysters, Shrimp (Biomass)

Abundance of Duck or other Target Species Currents; Water depth;

Plant diversity; Native, rare plants; reduction on land (elevation relative to water tial location/disparity of attenuation); Erosion protection

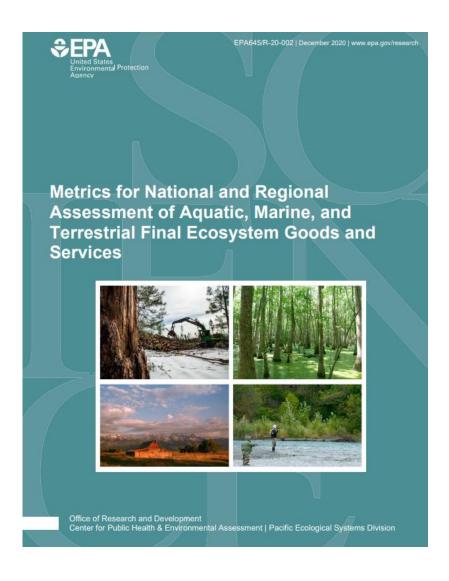
king the Ferry pathway; Access to fishing sites Biodiversity (Birds, Mammal richness)

y or quality (sediment/nutrient/contaminant)

Biodiversity (Birds, Mammal richness) Risk of mold x Risk of flooding

Access for educational opportunities Shells; Driftwood Fresh air; salty air Ability to serve as a wind buffer

Snakehead, jellyfish, catfish

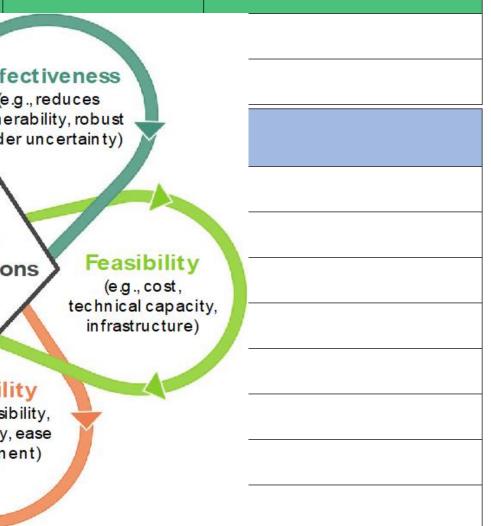

Identifying Relevant Ecosystem Services Metrics

Step 1: Who is the **user group/beneficiary**?

Step 2: What attributes does that user care about?Step 3: What would be an 'ideal' metric or model?Step 4: What data or models are actually available?

What Matters Directly to this Beneficiary?	Desired Information	Sub-Attribute (Fine Scale)	Ideal Biophysical Data
	Are there any obstructions in the water or along the substrate?	Bottom structure	benthos complexity
	Is it safe to go out? Does the boat captain need a certain level of experience?	Wave Intensity	Wave height, speed and direction
If in a boat, is it safe and	If in a boat do I have to anchor?	Currents	Tide, weather, wind speed and direction
navigable?	Is there sufficient water for my vessel? Can I manuever around?	Water Depth	NOAA bathymetry Charts
	Is it safe to go out?	Wind intensity	weather, wind speed and direction
Is this a good	Is the location aesthetically enjoyable?	Viewscapes	color of water, algae, clarity, smell, sounds
place to go boating?	Will I see something interesting?	Таха	Species, size, abundance, diversity

How might different Nature-based Strategies impact ecosystem services co-benefits?

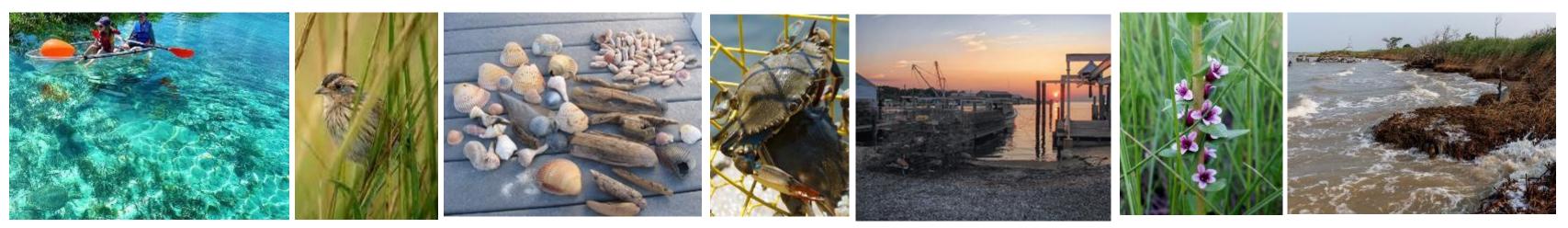

How do benefits compare across NBS options?

	Option 1 Status Quo	<u>Option 2</u> Janes Island Marsh	<u>Option 3</u> Cedar Island Marsh
Criteria		Restoration	Restoration
Effectiveness for Storm Surge			
Wave height reduction			
Rates of coastal erosion			al/Economic Eff
Social/Economic Benefits		(e.g. sy	Benefits , benefits other vstems, small
Fish/Oyster/Crab Abundance		car	bon footprint)
Charismatic Fauna/Birds			Select
Native/Rare Plants		Urge	Interventio
Seagrass/Marsh (Area & Quality)		(e.g., three sequer	at level,
Aesthetics/Viewscapes		lead t	-
Navigable Water (Boating Conditions)			(e.g., reversi adjustability
Water Clarity			to implem
Access for Recreation/Fishing/Education			

Option 4

Living Breakwaters

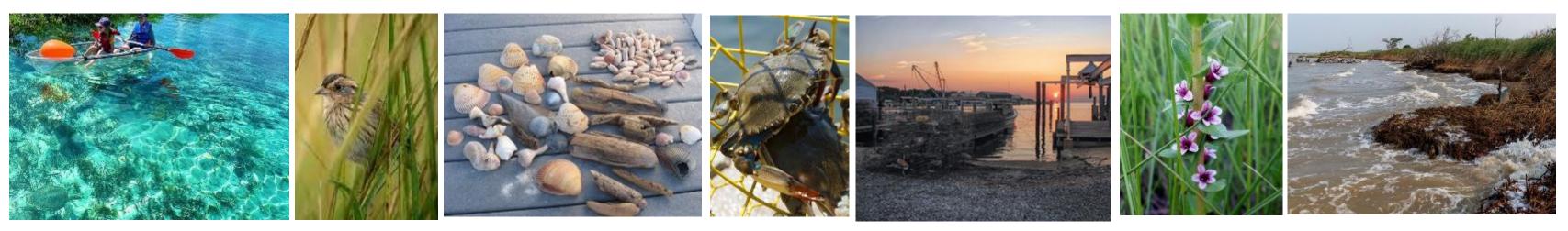
Option 5 Marsh Restoration + Dunes/ Living Shorelines



Adapted from Shaver et al. (2020)

What Can Ecosystem Services be Used For?

- Setting Local community goals what ecosystem services do we want to protect or restore?
- Communicating locally relevant benefits to motivate projects or sustain long-term interest
- Comparing restoration options
- Identifying creative opportunities for funding



What Can Ecosystem Services be Used For?

- Increase Progress toward CBP Outcomes
- Work strategically to achieve a broader set of goals for both ecosystems and communities

https://www.chesapeake.org/stac/wpcontent/uploads/2024/02/FINAL_Report_Ecosystem-Services_24_003.pdf

Using Ecosystem Services to Increase Progress Toward, and Quantify the Benefits of Multiple CBP Outcomes

STAC Workshop Report

March 16, 2023 April 18, 2023 June 6, 2023

For More Information

- Rossi, R., et al. 2022. Identifying and Aligning Ecosystem Services and Beneficiaries Associated with Best Management Practices in Chesapeake Bay Watershed. Environmental Management 69:384-409. https://doi.org/10.1007/s00267-021-01561-z
- Rossi, R., et al. 2023. Quantifying Ecosystem Services Benefits of Restoration and Conservation Best Management Practices in the Chesapeake Bay Watershed. U.S. EPA/ORD, Washington, DC. EPA/600/R-22/170. https://cfpub.epa.gov/si/si public record report.cfm?dirEntryId=357757
- National Ecosystem Goods and Services Classification System: <u>www.epa.gov/eco-research/nescs-plus</u>
- Final Ecosystem Goods and Services Scoping Tool: <u>https://www.epa.gov/eco-research/final-ecosystem-goods-and-</u> services-fegs-scoping-tool
- FEGS Metrics Report: <u>https://www.epa.gov/eco-research/final-ecosystem-goods-and-services-fegs-metrics-report</u>
- Ecosystem Services Models Library: <u>https://esml.epa.gov</u>
- EPA H2O: <u>https://www.epa.gov/water-research/ecosystem-services-scenario-assessment-using-epa-h2o</u>
- EnviroAtlas: <u>https://www.epa.gov/enviroatlas</u>
- InVEST: <u>https://naturalcapitalproject.stanford.edu/software/invest</u>
- I-Tree: https://www.itreetools.org/
- Rapid Benefits Indicators: <u>https://www.epa.gov/water-research/rapid-benefit-indicators-rbi-approach</u>
- Ecosystem Services Tool Selection Portal: <u>https://www.epa.gov/eco-research/ecosystem-services-tool-selection-portal</u>
- Shaver E C, et al. 2020. A Manager's Guide to Coral Reef Restoration Planning and Design. NOAA Coral Reef Conservation Program. NOAA Technical Memorandum CRCP 36, 128 pp. <u>https://www.coris.noaa.gov/activities/restoration_guide</u>

Acknowledgments

RESES Project

- Ryann Rossi
- Carin Bisland
- Bo Williams
- Emily Trentacoste
- Vanessa Van Note
- Bill Jenkins
- Leah Sharpe

Crisfield, MD

- Roxolana Kashuba
- Emily Eisenhauer
- Susan Yee
- Jordan West
- Ian Reilly (ORISE fellow)
- Kyle Buck
- Steve Pacella
- Alex Dhond (ORISE fellow)
- Blake Schaffer
- Tanja Crk (Office of Water)
- Veerani Tailor (student services contractor)

- Jenna Hartley
- Louie Rivers
- Emily Trentacoste
- Rich Fulford
- Anne Kuhn
- Justin Bousquin
- Candace May
- Abigail Sullivan
- Communications:
 - Elizabeth Stanziano
 - Marie Schneider
 - Caroline Cole
 - Jessica Daniel
- Supported by Tetra Tech
- EPA Region 3, CBPO