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Artificial intelligence and some subsets

Artificial Intelligence Act like a human

Machine Learning

Learn to act like a human

Neural Networks

Learn like a human

Deep Learning

Learn like a smarter human

Generative Al Learn from all the humans
genAl
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Machine learning paradigms
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https://www.wolfram.com/language/introduction-machine-learning/machine-learning-paradigms/
https://d38c6ppuviqmfp.cloudfront.net/content/publications/cbp_13142.pdf
https://baydreaming.com/about-the-chesapeake-bay/explore/
https://www.us-ocb.org/drivers-of-recent-chesapeake-bay-warming/

Machine learning paradigms
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https://www.wolfram.com/language/introduction-machine-learning/machine-learning-paradigms/
https://www.wolfram.com/language/introduction-machine-learning/machine-learning-paradigms/
https://baydreaming.com/about-the-chesapeake-bay/explore/
https://doi.org/10.1016/j.watres.2022.118443
https://doi.org/10.1021/acs.est.0c02495
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https://www.wolfram.com/language/introduction-machine-learning/machine-learning-paradigms/
https://blog.roboflow.com/what-is-dimensionality-reduction/
https://www.wolfram.com/language/introduction-machine-learning/machine-learning-paradigms/
https://www.wolfram.com/language/introduction-machine-learning/machine-learning-paradigms/
https://medium.com/@dave.cote.msc/visualization-trick-for-multivariate-regression-problems-5b3aa25ff2f8
https://deeplobe.ai/exploring-object-detection-applications-and-benefits/
https://stock.adobe.com/images/abstract-powder-splatted-background-colorful-powder-explosion-on-white-background-colored-cloud-colorful-dust-explode-paint-holi/233450923

Machine learning paradigms
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https://www.wolfram.com/language/introduction-machine-learning/machine-learning-paradigms/
https://blog.roboflow.com/what-is-dimensionality-reduction/
https://www.wolfram.com/language/introduction-machine-learning/machine-learning-paradigms/
https://www.wolfram.com/language/introduction-machine-learning/machine-learning-paradigms/
https://medium.com/@dave.cote.msc/visualization-trick-for-multivariate-regression-problems-5b3aa25ff2f8
https://deeplobe.ai/exploring-object-detection-applications-and-benefits/
https://stock.adobe.com/images/abstract-powder-splatted-background-colorful-powder-explosion-on-white-background-colored-cloud-colorful-dust-explode-paint-holi/233450923

RF
Clustering
NN
CART
LSTM
Regression
ANN
GAM
EOF

DL

BRT
SVM
SHAP
KNN
CNN
SEM

RT

PSM
PCA

NB

: MDN
s MARS

=i A LDFA
e K-means
' GLM
BNL
BART
o AutoML

ML Method

f—;fcience'ld’r achanging world

1980

Chesapeake ML methods used
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https://docs.google.com/spreadsheets/d/1MrmT6MV0BNphGl4KUn1imnexRo7exVMm/edit?usp=sharing&ouid=116199540419260639667&rtpof=true&sd=true
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Chesapeake ML general approaches used

SHARE CB_ML _literature.xlsx
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https://docs.google.com/spreadsheets/d/1MrmT6MV0BNphGl4KUn1imnexRo7exVMm/edit?usp=sharing&ouid=116199540419260639667&rtpof=true&sd=true

Decision trees for classification

Decision tree

Original data
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https://www.youtube.com/playlist?list=PLM8wYQRetTxAl5FpMIJCcJbfZjSB0IeC_

Decision trees for regression

9744.51

BN

1898.00 esescesee 6936.22

12044.59

Var Red = Var(parent) — Z w; Var(child;)

At each branch, choose the split threshold
that most reduces the sum of variances in
the child nodes



https://www.youtube.com/playlist?list=PLM8wYQRetTxAl5FpMIJCcJbfZjSB0IeC_

Decision trees for regression

Prediction f(16, -2) =
average of the 3 points
in this leaf node

R S
- Q. .
,9-~,Us“§§ From Tree Based Algorithms


https://www.youtube.com/playlist?list=PLM8wYQRetTxAl5FpMIJCcJbfZjSB0IeC_

Random forest classification

Bootstrapping (only sample ids are shown)
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https://www.youtube.com/playlist?list=PLM8wYQRetTxAl5FpMIJCcJbfZjSB0IeC_

Gradient boosting

model1
1. Initial prediction = average model(2
2. Calculate pseudo-residuals + or X &%
: 3. Built a weak (simple) learner dels
of the residuals + 01 X

4. Repeat P

5. Prediction = model4
model1 + +/0,-1 X
model2 * learning rate + learning rate

e model3 * learning rate +
e model4 * learning rate + ...

StatQuest - Gradient Boost Part 1



https://www.youtube.com/watch?v=3CC4N4z3GJc

Neural networks — a neuron

Linear combination
Output of inputs

l ml

X1 W,
y = ( Z Xi Wi )
w | (=1
w. Non-linear
x activation function

s Inputs  Weights Sum  Non-Linearity Output
2ZUS! MIT introduction to deep learning



https://www.youtube.com/watch?v=ErnWZxJovaM&list=PLtBw6njQRU-rwp5__7C0oIVt26ZgjG9NI&index=2

Neural networks — a neuron

Activation Functions

57 = g( Wo +XTW )
X W,
g T‘ - WEN f 9 » Example: sigmoid function
X, / 1

Wi 9(2)=0(2)=1+e-z

1+ —

0.5
Inputs  Weights Sum  Non-Linearity Output J
L 1 v

MIT introduction to deep learning
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https://www.youtube.com/watch?v=ErnWZxJovaM&list=PLtBw6njQRU-rwp5__7C0oIVt26ZgjG9NI&index=2

Neural networks get feedback by backpropagation

" W, / A very, very simple neural network.
B > ESSSENNE 9 e——" Weights W are the model parameters.
Loss J(W) is bigger when predictions are
bad, e.g., RMSE

aj(W) _ 6](W) . 657 " 0z, /Gradient:changeintheloss(aJ(W))per
dw, ay 02, ow, change in a weight ( ow;, )

Backpropagation: computation of the

/ . . .
U U gradient for each weight, using the good

old chain rule from calculus

aJ] (W) / Update: adjust each weight in the
WeW - direction that reduces loss, at a rate that
T ow

reflects its importance to the loss

’.-éy ,,SGS MIT introduction to deep learning 16
'science for achangi


https://www.youtube.com/watch?v=ErnWZxJovaM&list=PLtBw6njQRU-rwp5__7C0oIVt26ZgjG9NI&index=2

Neural networks improve by gradient descent

In each iteration:

* Adjust weights by some
small amount inthe
direction of the gradient

* Runthe model with
new weights and
recalculate loss and
gradients

-’ | 7 .V? . . .
’éthGs MIT introduction to deep learning 17
'science for achangil


https://www.youtube.com/watch?v=ErnWZxJovaM&list=PLtBw6njQRU-rwp5__7C0oIVt26ZgjG9NI&index=2

Neural networks are diverse and evolving

Deep Learning (DL) History
2017

1956

USGS Zhietal. 2024 18



https://doi.org/10.1038/s44221-024-00202-z

Neural networks can mix with conceptual models

* Differentiable models for water quantity/quality/ecology:
* freely mix neural network and process-based components
* training (calibration) is efficient because of back-propagation
* model is more interpretable; learning can focus on select processes

a Differentiable hydrological model using Process-based model component
a process-based model as a backbone P TT T T T T TT ST ST o TS o oo oo oo oo ooooo oo oo oo o-o- oo
. Precipitation |
! Temperature |
1 Evapotranspiration (ET) !
! ISnowfa I '
Machine learning component (parameter regionalization) | Rainfall snowpack (S,) i
[ Y |
i Attributes o I Meltwater i
. [
i Soil, land cover, Neural network unit P Soil moisture (S) |
i geology, others... Static@ 1 | m i
! ik, ol 141 Neural network l
! Forcing *=me=amaa g e B/B ! @: replacement (optional) :
! Precipitation, Dynamic 8 | | - 5 o
' temperature... g,(Ax) P ' immnmm—— Fast runoff
| ! Reservoir upper zone (S,,) —————— !
| > - - - 1
i 2] . Ncmmmm. Total I Observed
e i ? ' Percolation L < N e Qrunoﬂ‘ | runoff
i Reservoir lower zone (S,) e rr—— Q2_-__-______ ®  Loss : Vot
- | 0., Slow runoff i

______________________________________________________________________

ZUSGS .
e Shen et al. 2023 (no paywall on arXiv) 19



https://arxiv.org/pdf/2301.04027
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Gs shap.readthedocs.io 20
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https://shap.readthedocs.io/en/latest/example_notebooks/overviews/An%20introduction%20to%20explainable%20AI%20with%20Shapley%20values.html

ALGORITHMS

__Supervised |

'am‘!b‘niha:igiagwbdd :
S N |

MACHINE LEARNING

Naive Bayes ]

Logistic Regression J

, K-Nearest Neighbor (KNN) |
lﬁﬁﬂﬂﬂlv —— ]
[ M support Vector Machine (VM) |

/ Decision Tree )

Regression Simple Linear Regression |
Multivariate Regression )

Lasso Regression ]

Abdullah 2024

ENSEMBLE
METHODS

K Nearest Neighbor (K-NN)
Naive Bayes

Support Vector Machines (SVM)
Decision Trees

Logistic Regression

Classification

Linear Regression
Polynomial Regression
Ridge/Lasso
Regression

Regression

Density-Based Spatial Clustering of
Applications with Noise (DBSCAN)
Mean-Shift

K-Means

Fuzzy C-Means
Agglomerative

Clustering

Euclat
oo ——
FP-Growth
Genetic Algorithm
Asynchronous Advantage Actor-critic (A3C)
State Action Reward State Action (SARSA)

Deep Q-Network
Q-Learning

Bagging —— Random Forest

Light Gradient Boosting Machine (LightGBM)
eXtreme Gradient Boosting (XGBoost)

Boosting ——— Adaptive Boosting (AdaBoost)
Gradient Boosting Decision Tree (GBDT)

Categorical Features + Gradient Boosting

(CatBoost)
Stacking
' Diffusion Convolutional Recurrent Neural
Convolutional _ Network (DCNN)
Neural Networks ™ Deep residual network (ResNet)
(CNN) Dense Convolutional Network (DenseNet)

Resiifent Nauial Long Short Term Memory (LSTM )
Networks(RNN) — G_aljed Beeunsnt Unit (GRU)
Bidirectional RNN (BRNN)

Generative
Adversarial Networks(GAN)

Perceptrons
Autoencoders —— Seq2Seq

Gao etal. 2021

21


http://dx.doi.org/10.1002/adfm.202108044
https://medium.com/@infocean.info/an-overview-of-machine-learning-algorithms-ccd68de6eead

Choosing an ML method

scikit-learn . Ceaxn

Ld
classification Kernel START algorlthm cheat sheet
. . get
Approximation more
sve SGD data 5
Ensemble KNeighbors Classifier 5 regression
; 50 ar
Classifiers Classifier ‘ samples Lasso
4 = SVR(kemel:"rbf‘)
NO o SGD ElasticNet
YES Regressor Ensemble
Naive f Regressors
Bayes text <100K NG
data Li YES samples predicting a
;le;agr -3 category <100K
samples
YES
Jus RidgeRegression
do you have
labeled predicting a SVR (kernel="linear")
NO data quantity
-KMeans
number of NO
Spectral YES categories
Clustering s known ; Ramdomized
just
=S GMM :ﬁf No looking J o 1>] Pca IsoMap
y : Spectral
. NO <10K NO °
S o clustering J e YO __o»{ Embedding —
S % YES'
MiniBatch . YES predicting
MeanShift . . .
KMeans T structure :EK No—pf  Kernel dimensionality
’ Approximation reduction

= 1 Preliminary information - Subject to revision. Not for citation or distribution.

scikit-learn
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https://scikit-learn.org/stable/machine_learning_map.html

Automatic ML selection (AutoML)

galdt H20
* AutoML * No-code or low-code fitting & selection of ML algorithms

* Try out many different algorithms

* Tune model hyperparameters (i.e., configurations)
e Can combine into ensembles

* Apply model explanation tools (XAl)

Amazon SageMaker

e.g., H20 AutoML; Amazon SageMaker Canvas;
an overview at superannotate automl-guide

%U Gs Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. 23
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https://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html
https://docs.aws.amazon.com/sagemaker/latest/dg/canvas.html
https://www.superannotate.com/blog/automl-guide

Accuracy vs interpretability

High ° Neural Networks

(MLPs, RNNs) Characteristics of Highly
Accurate Models
‘... Ensemble Methods: * Non-linear relationships
(XGBoost, * Non-smooth relationships
Random Forest) * Long Computation Time
‘ Kernel Based Methods
Support Vector Machine
g i . “_ d Clustering
) %
§ " @ K-Nearest Neighbors Decision Trees
3 . provide good
o i Accuracy vith very
< @, ' Lecision fiees high Interpretability
Characteristics of Highly
Interpretable Models
* Linear & Smooth —
s e * Well defined relationships ° Logistic Regression
S = @ Unsupervised Leaming * Easy to compute

@ Supenised Leaming

- '. E ] 3 Both
tow C e—

Low Interpretability High

Rane 2018

Preliminary information - Subject to revision. Not for citation or distribution. 24
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https://medium.com/towards-data-science/the-balance-accuracy-vs-interpretability-1b3861408062

=science for achanging world -

Accuracy and interpretability?

Hybrid modelling approaches
XAl's future New explainability-preserving modelling approaches
research arena Interpretable feature engineering

Post-hoc explainability techniques
Interpretability-driven model designs

Low
Low High
Model interpretability Analytics Vidhya 2024

Preliminary information - Subject to revision. Not for citation or distribution. 25


https://www.analyticsvidhya.com/blog/2021/01/explain-how-your-model-works-using-explainable-ai/
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GenAl use case: Hydro/ecological predictions

Ecological Informatics
Volume 80, May 2024, 102545

ECOLOGICAL

Foundation models in shaping the

future of ecology

Albert Morera @? & X

@

Towards Digital Twin:
Introduction to Foundation
Models for Geoscience

Sujit Roy, PhD

Johannes Schmude, PhD

%)

1% O

APPLca‘t‘ons
)

[ m }?ADAP’FMIOM Applications

FOUNDATION MODEL

Pre—’f‘rc\in;n?
(Sgip Supew?sed Leaming)

App [ ications

3
App lications

W?o‘e cc\‘tegorleg of
use cases

2 A FOUNDATION MODEL FOR THE EARTH SYSTEM
a ¢
ATMOSPHERIC CHEMISTRY WAVE MODELLING HURRICANE TRACKING WEATHER FORECASTING
AND AIR QUALITY 0.4°
@& ||
= @
=] @
A J
AURORA FOUNDATION MODEL

-

[ soswiw

TRANSFORMER

> UNET 1
ARBITRARY VARIABLES, + ARBITRARY VARIABLES,

PRESSURE LEVELS & RESOLUTION  LATENT ATMOSPHERIC INPUT LATENT ATMOSPHERIC OUTPUT PRESSURE LEVELS & RESOLUTION

TIMES (T-1,T) TIMET +1

Fig. 1: Aurora is a 1.3 billion parameter foundation model for the Earth system. a: Aurora is pretrained on
multiple heterogeneous datasets with different resolutions, variables, and pressure levels. The model is then fine-tuned

P
3D PERCEIVER
ENCODER
S =

_, | 3DPERCEIVER
DECODER
-

J

Finetuning Results for Flood Detection Example - Dataset faci Fraacall
Insights: Flood detection

<< Inference>>
(e.g., flood task)

See https://arxiv.org/abs/2310.18660

Preliminary information - Subject to revision. Not for citation or distribution.



GenAl use case: Code development

rg\ Provide python code to implement a LSTM with three target variables g Certainly! Below is an example of how to implement an LSTM model in Python using

Keras with TensorFlow as the backend. This example is designed for a dataset with
three target variables.
# Scale the data

scaler_X = MinMaxScaler()
scaler_y = MinMaxScaler()

Prerequisites

Make sure you have the necessary libraries installed:

X_scaled scaler_X.fit_transform(X)
bash [°) Copycode ¥, y_scaled = scaler_y.fit_transform(y)

=

pip install numpy pandas tensorfi #afachanedanut te bhafeamalac Jtinactans, features]
Explanatlon 'y, modify as needed
e[0], 1, X_scaled.shape[l]))

Example Code 1. Data Preparation: The code generates sample data with two features and three ing sets

target variables. In practice, you would load your dataset here. est_split(X_scaled, y_scaled, tesd

python . : . .
. Scaling: The input features and target variables are scaled using “MinMaxScaler.

import numpy as np . Reshape Input: The input data is reshaped to fit the LSTM model's requirements.
import pandas as pd 1t_shape=(X_train.shape[1], X_trai

from sklearn.preprocessing impon . Model Building: A simple LSTM model is created with one LSTM layer followed by
from tensorflow.keras.models img ! target variables

from tensorflow.keras.layers img a dropout layer and a dense layer for the output.

from sklearn.model_selection imp - ) . X X ..
. Training: The model is compiled and trained using the training set. .
\_squared_error')
# Sample data generation
# Assume we have a DataFrame ‘da
data = pd.DataFrame({ ‘ch_size=32, validation_data=(X_ted
'featurel': np.random.rand(1 Feel free to modify the number of epochs, batch size, and model architecture based
'feature2': np.random.rand(1
"targetl': np.random.rand(1e
"target2': np.random.rand(1000), print(f'Test Loss: {loss}')
"target3': np.random.rand(1000)

. Evaluation: The model is evaluated on the test set, and predictions are made.

on your specific requirements and dataset characteristics.

1 # Make predictions
< predictions = model.predict(X_test)
< # Features and targets
S s X = data[['featurel', 'feature2']].values # Inverse transform the predictions to get original values
%USGS y = datal['targetl', 'target2', 'target3']].values predictions_inverse = scaler_y.inverse_transform(predictions)

e L s otk Preliminary information - Subject to revision. Not for citation or distribution.
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GenAl use case: Literature exploration

\i SEMANTIC SCHOLAR chesapeake bay machine learning

About 23,600 results for “chesapeake bay machine learning”

* Browse papers by
“too long; didn’t

Fields of Study v Date Range v Has PDF Author v Journals & Conferences v

rea d » (TL D R) Machine Learning-Based Wave Model With High Spatial Resolution in Chesapeake Bay
Jian Shen  ZhenguiWang  JiabiDu  Yinglong J. Zhang  Qubin Qin
S u m m a ry Environmental Science, Computer Science - Earth and Space Science - 1 March 2024

TLDR A machine learning model using long short-term memory to simulate large-scale, high-resolution
waves and shows promise as an alternative for wave forecasting and coupling with sediment and
ecological models.Expand

3 PDF B Wiley R Save &6 Cite

Use of interpretable machine learning to identify the factors influencing the nonlinear linkage
between land use and river water quality in the Chesapeake Bay watershed

Zhenyu Zhang  JinliangHuang  S.Duan  YalingHuang JuntaoCai  Jing Bian

Environmental Science, Computer Science - Ecological Indicators - 1 July 2022

6632 Publisher R Save &6 Cite

Explainable machine learning improves interpretability in the predictive modeling of
biological stream conditions in the Chesapeake Bay Watershed, USA.

K. Maloney  C.Buchanan +5authors Matthias Schmid Environmental Science, Biology

Journal of Environmental Management - 1 September 2022

= 6614 @ PDF PubMed M Save &k Cite

28
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GenAl use case: Literature exploration
Ask This Paper - Al-Powered

* Browse papers by
“too long; didn’t
read” (TLD R) which ML method performed best?

summary

The U-Net model with ResNet-18 backbone performed the best among the
common semantic segmentation models.

Supporting Statements 173 < >

The receptive field of this model is 978.
View In PDF ~ Page 3 Results

* Ask for specific
information

35 5 © Model A Is Better

o Restart  Ask a question about "Seeing the roads through the trees: A benchmark for modeling spatial...

It's ATie

" Al-Powered X

Model B

which ML method performed best?

The DeepLabV3+ with ResNet-50 backbone performed slightly better overall,
though results were similar across the common semantic segmentation models
tested.

Supporting Statements 173 < >

The other common semantic segmentation models all perform
similarly, with the DeepLabV3+ ResNet-50 performing slightly
better on all metrics but distance weighted recall (where the
simplest model, a U-Net with ResNet-18 backbone performs
best). We observe that the distance weighted recall over the "tree
canopy over road" class is much lower than unweighted recall
across all models (= 25% for the common semantic
segmentation models), meaning that the models are performing
worse at correctly identifying "tree canopy over road" the farther
away it is from a "road" class.

View In PDF ~ Page 4 Conclusion

Neither Are Helpful Model B Is Better @

29
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SEEING THE ROADS THROUGH THE TREES:
A BENCHMARK FOR MODELING SPATIAL DEPENDENCIES WITH AERIAL IMAGERY
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ABSTRACT

Fully understanding a complex high-resolution satellite or
aerial imagery scene often requires spatial reasoning over
a broad relevant context. The human object recognition
system is able to understand object in a scene over a long-
range relevant context. For example, if a human observes
an aerial scene that shows sections of road broken up by
tree canopy, then they will be unlikely to conclude that the
road has actually been broken up into disjoint pieces by
trees and instead think that the canopy of nearby trees is oc-
cluding the road. However, there is limited research being
conducted to understand long-range context understanding
of modern machine learning models. In this work we pro-
pose a road segmentation benchmark dataset, Chesapeake
Roads Spatial Context (RSC), for evaluating the spatial long-
range context understanding of geospatial machine learning
models and show how commonly used semantic segmen-
tation models can fail at this task. For example, we show
that a U-Net trained to segment roads from background in
aerial imagery achieves an 84% recall on unoccluded roads,
but just 63.5% recall on roads covered by tree canopy de-
spite being trained to model both the same way. We fur-
ther analyze how the performance of models changes as
the relevant context for a decision (unoccluded roads in

neural networks are often biased towards local textures and
other local features while ignoring long-range dependencies
even when global information is available [4, 5, 6]. This phe-
nomenon is often overlooked since models can still perform
well in most common benchmark datasets while only using
local features. For example, Brendel et al. show that a bag of
32 x 32 features can achieve high performance (87.6% top-5
accuracy) on ImageNet [7].

Other vision applications like Visual Question Answer-
ing (VQA) require models to perform spatial reasoning [¥]
and, with the success of general purpose language models,
there has been an explosion of research adapting language
models to be able to capture long-range dependencies using

transformers [9, 10]. Similarly there has been a revival of
recurrent neural networks (RNN) [1 ]] via state space mod-
els (SSM) [12, 13, 14, 15, 16, 17, 1£] to avoid the quadratic

cost of attention when modeling long sequences. These meth-
ods have recently been successfully applied to modeling im-

Multiple geospatial machine learning applications require
models that are able to understand longer range dependencies
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Recurrent neural networks (e.g., for timeseries)
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https://www.youtube.com/watch?v=ErnWZxJovaM&list=PLtBw6njQRU-rwp5__7C0oIVt26ZgjG9NI&index=2

Long short-term memory (LSTM) networks
(even better for timeseries)
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Process-guided deep learning (PGDL)
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