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Artificial intelligence and some subsets

Artificial Intelligence

Machine Learning

Neural Networks

Deep Learning

Generative AI
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Act like a human

AI

ML

NN

DL

genAI

Learn to act like a human

Learn like a human

Learn like a smarter human

Learn from all the humans
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Machine learning paradigms
Supervised Unsupervised Reinforcement

(and maybe also:
  Semi-supervised
  Online
  Active
  Transfer
  …)

Categorical Classification Clustering

Continuous Regression Dimensionality Reduction

Other Object detection Anomaly detection
Generative modeling

Sequential actions
…

Wolfram Intro to ML

Pile of observations
(need help organizing)

Labeled datasets
(true value is known)

How much?

Which location?
Enough oxygen?

CBP 2003baydreaming

US-OCB

https://www.wolfram.com/language/introduction-machine-learning/machine-learning-paradigms/
https://d38c6ppuviqmfp.cloudfront.net/content/publications/cbp_13142.pdf
https://baydreaming.com/about-the-chesapeake-bay/explore/
https://www.us-ocb.org/drivers-of-recent-chesapeake-bay-warming/
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Machine learning paradigms
Supervised Unsupervised Reinforcement

(and maybe also:
  Semi-supervised
  Online
  Active
  Transfer
  …)

Categorical Classification Clustering

Continuous Regression Dimensionality Reduction

Other Object detection Anomaly detection
Generative modeling

Sequential actions
…

Wolfram Intro to ML
wolframbaydreaming

Pile of observations
(need help organizing)

Zhang et al. 2022

Labeled training data
(true values known)

Wherry et al. 2000

https://www.wolfram.com/language/introduction-machine-learning/machine-learning-paradigms/
https://www.wolfram.com/language/introduction-machine-learning/machine-learning-paradigms/
https://baydreaming.com/about-the-chesapeake-bay/explore/
https://doi.org/10.1016/j.watres.2022.118443
https://doi.org/10.1021/acs.est.0c02495
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Machine learning paradigms
Supervised Unsupervised Reinforcement

(and maybe also:
  Causal
  Semi-supervised
  Online
  Active
  Transfer
  …)

Categorical Classification Clustering

Continuous Regression Dimensionality Reduction

Other Object detection Anomaly detection
Generative modeling

Sequential actions
…

Wolfram Intro to MLroboflow

wolframwolfram

Dave Cote

DeepLobe Adobe Stock

https://www.wolfram.com/language/introduction-machine-learning/machine-learning-paradigms/
https://blog.roboflow.com/what-is-dimensionality-reduction/
https://www.wolfram.com/language/introduction-machine-learning/machine-learning-paradigms/
https://www.wolfram.com/language/introduction-machine-learning/machine-learning-paradigms/
https://medium.com/@dave.cote.msc/visualization-trick-for-multivariate-regression-problems-5b3aa25ff2f8
https://deeplobe.ai/exploring-object-detection-applications-and-benefits/
https://stock.adobe.com/images/abstract-powder-splatted-background-colorful-powder-explosion-on-white-background-colored-cloud-colorful-dust-explode-paint-holi/233450923
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Machine learning paradigms
Supervised Unsupervised Reinforcement

and arguably also
  Semi-supervised
  Causal
  Online
  Active
  Transfer
  and other kinds of
learning

Categorical Classification Clustering

Continuous Regression Dimensionality Reduction

Other Object detection Anomaly detection
Generative modeling

Sequential actions
…

Wolfram Intro to MLroboflow

wolframwolfram

Dave Cote

DeepLobe Adobe Stock

https://www.wolfram.com/language/introduction-machine-learning/machine-learning-paradigms/
https://blog.roboflow.com/what-is-dimensionality-reduction/
https://www.wolfram.com/language/introduction-machine-learning/machine-learning-paradigms/
https://www.wolfram.com/language/introduction-machine-learning/machine-learning-paradigms/
https://medium.com/@dave.cote.msc/visualization-trick-for-multivariate-regression-problems-5b3aa25ff2f8
https://deeplobe.ai/exploring-object-detection-applications-and-benefits/
https://stock.adobe.com/images/abstract-powder-splatted-background-colorful-powder-explosion-on-white-background-colored-cloud-colorful-dust-explode-paint-holi/233450923
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Chesapeake ML methods used

SHARE CB_ML_literature.xlsx

https://docs.google.com/spreadsheets/d/1MrmT6MV0BNphGl4KUn1imnexRo7exVMm/edit?usp=sharing&ouid=116199540419260639667&rtpof=true&sd=true
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Chesapeake ML general approaches used

SHARE CB_ML_literature.xlsx

https://docs.google.com/spreadsheets/d/1MrmT6MV0BNphGl4KUn1imnexRo7exVMm/edit?usp=sharing&ouid=116199540419260639667&rtpof=true&sd=true


Original data

Decision tree

D
ecreasing entropy (or im

purity)

From Tree Based Algorithms

-10 0 10

-10

0

10

X0

X1

Leaf
node

Decision
node

Decision trees for classification

https://www.youtube.com/playlist?list=PLM8wYQRetTxAl5FpMIJCcJbfZjSB0IeC_


Decision trees for regression 

From Tree Based Algorithms

At each branch, choose the split threshold 
that most reduces the sum of variances in 

the child nodes

https://www.youtube.com/playlist?list=PLM8wYQRetTxAl5FpMIJCcJbfZjSB0IeC_


Decision trees for regression

From Tree Based Algorithms

Prediction f(16, -2)  = 
average of the 3 points 

in this leaf node

https://www.youtube.com/playlist?list=PLM8wYQRetTxAl5FpMIJCcJbfZjSB0IeC_
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Random forest classification
Bootstrapping (only sample ids are shown)

Feature 
selection

3.8 3.0 2.9 1.2 4.7 1

Majority
vote

From Tree Based Algorithms

https://www.youtube.com/playlist?list=PLM8wYQRetTxAl5FpMIJCcJbfZjSB0IeC_


13

Gradient boosting
1. Initial prediction = average
2. Calculate pseudo-residuals
3. Built a weak (simple) learner 

of the residuals
4. Repeat
5. Prediction = 

model1 + 
model2 * learning rate + 
model3 * learning rate +
model4 * learning rate + …

StatQuest - Gradient Boost Part 1 

learning rate

model1

model2

model3

model4

https://www.youtube.com/watch?v=3CC4N4z3GJc
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Neural networks – a neuron

MIT introduction to deep learning

https://www.youtube.com/watch?v=ErnWZxJovaM&list=PLtBw6njQRU-rwp5__7C0oIVt26ZgjG9NI&index=2
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Neural networks – a neuron

MIT introduction to deep learning

https://www.youtube.com/watch?v=ErnWZxJovaM&list=PLtBw6njQRU-rwp5__7C0oIVt26ZgjG9NI&index=2
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Neural networks get feedback by backpropagation

A very, very simple neural network. 
Weights W are the model parameters. 
Loss J(W) is bigger when predictions are 
bad, e.g., RMSE

Gradient: change in the loss ( ∂J(W) ) per 
change in a weight ( ∂w1 )

Backpropagation: computation of the 
gradient for each weight, using the good 
old chain rule from calculus

Update: adjust each weight in the 
direction that reduces loss, at a rate that 
reflects its importance to the loss

MIT introduction to deep learning

https://www.youtube.com/watch?v=ErnWZxJovaM&list=PLtBw6njQRU-rwp5__7C0oIVt26ZgjG9NI&index=2
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Neural networks improve by gradient descent

In each iteration:

• Adjust weights by some 
small amount  in the 
direction of the gradient

• Run the model with 
new weights and 
recalculate loss and 
gradients

MIT introduction to deep learning

https://www.youtube.com/watch?v=ErnWZxJovaM&list=PLtBw6njQRU-rwp5__7C0oIVt26ZgjG9NI&index=2
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Neural networks are diverse and evolving

Zhi et al. 2024

https://doi.org/10.1038/s44221-024-00202-z


• Differentiable models for water quantity/quality/ecology:
• freely mix neural network and process-based components
• training (calibration) is efficient because of back-propagation
• model is more interpretable; learning can focus on select processes

19

Neural networks can mix with conceptual models

Shen et al. 2023 (no paywall on arXiv)

https://arxiv.org/pdf/2301.04027


SHapley Additive 
exPlanations (SHAP)

• Provides attribution – quantifies the 
effect of each input variable value on 
the prediction

• Additive – SHAP values sum to the 
difference between the baseline and 
current model prediction

20

One 
prediction

All
predictions

f(x) = log(home price)

shap.readthedocs.io

https://shap.readthedocs.io/en/latest/example_notebooks/overviews/An%20introduction%20to%20explainable%20AI%20with%20Shapley%20values.html
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Gao et al. 2021Abdullah 2024

http://dx.doi.org/10.1002/adfm.202108044
https://medium.com/@infocean.info/an-overview-of-machine-learning-algorithms-ccd68de6eead
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Choosing an ML method

scikit-learn

https://scikit-learn.org/stable/machine_learning_map.html
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Automatic ML selection (AutoML)

• No-code or low-code fitting & selection of ML algorithms
• Try out many different algorithms
• Tune model hyperparameters (i.e., configurations)
• Can combine into ensembles
• Apply model explanation tools (XAI)

e.g., H2O AutoML; Amazon SageMaker Canvas; 
an overview at superannotate automl-guide

Many
others

Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.
Preliminary information - Subject to revision. Not for citation or distribution.

https://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html
https://docs.aws.amazon.com/sagemaker/latest/dg/canvas.html
https://www.superannotate.com/blog/automl-guide
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Accuracy vs interpretability

Rane 2018

https://medium.com/towards-data-science/the-balance-accuracy-vs-interpretability-1b3861408062
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Accuracy and interpretability?

Analytics Vidhya 2024

https://www.analyticsvidhya.com/blog/2021/01/explain-how-your-model-works-using-explainable-ai/


GenAI use case: Hydro/ecological predictions

26
Preliminary information - Subject to revision. Not for citation or distribution.



GenAI use case: Code development

27
Preliminary information - Subject to revision. Not for citation or distribution.



GenAI use case: Literature exploration

28

• Browse papers by 
“too long; didn’t 
read” (TLDR) 
summary

Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.
Preliminary information - Subject to revision. Not for citation or distribution.



GenAI use case: Literature exploration

29

• Browse papers by 
“too long; didn’t 
read” (TLDR) 
summary

• Ask for specific 
information

Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.
Preliminary information - Subject to revision. Not for citation or distribution.



GenAI use case: Literature exploration

30

• Browse papers by 
“too long; didn’t 
read” (TLDR) 
summary

• Ask for specific 
information

• Skim for key points 
more quickly

• Future: summarize 
multiple papers 
together

Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.
Preliminary information - Subject to revision. Not for citation or distribution.



• Chesapeake AI is mostly ML 
(useful for brevity?)

• Many great algorithms & tools 
exist and are emerging

• Neural networks are endlessly 
flexible…but tree ensembles 
sometimes still outperform

• Generative AI is a whole new 
game with new uses to consider

Preliminary information - Subject to revision. Not for citation or distribution. 31

Conclusions

Artificial 
Intelligence

Machine Learning

Neural 
Networks

Deep 
Learning

Genera-
tive AI

Tree-Based ML

eXplainable 
AI

AutoML
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Recurrent neural networks (e.g., for timeseries)

MIT introduction to deep learning

https://www.youtube.com/watch?v=ErnWZxJovaM&list=PLtBw6njQRU-rwp5__7C0oIVt26ZgjG9NI&index=2


Long short-term memory (LSTM) networks 
(even better for timeseries)

input gate:

forget gate:

cell input:

output gate:

cell state:

hidden state:

learnable parameters

MIT introduction to deep learning and Kratzert and others, 2019

https://www.youtube.com/watch?v=ErnWZxJovaM&list=PLtBw6njQRU-rwp5__7C0oIVt26ZgjG9NI&index=2
https://doi.org/10.5194/hess-23-5089-2019


Process-guided deep learning (PGDL)

Preliminary information – subject to revision. Not for citation or 
distribution.

Input 
Layer

Output 
Layer

Training 
Data

Feature 
selection & 
engineering

Hidden Layer[s]

Process-relevant 
architecture or 

constraints

Process-relevant 
loss function

Process-based 
model outputs

Process-based 
model outputs

Process-based 
model residuals

Concepts expanded from Willard et al. 2022
Figure by Ellen Bechtel, modified from Appling et al. 2022

https://doi.org/10.1145/3514228
https://doi.org/10.31223/X5964S
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