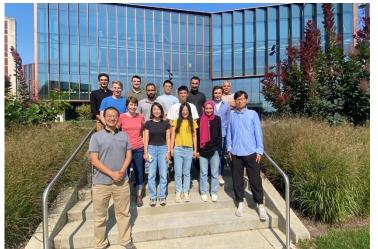


State-of-the-Art AI and Physics-informed ML in Hydrology & Water Quality: Insights and Synergies

Chaopeng Shen

¹Civil and Environmental Engineering Penn State University

cshen@engr.psu.edu



Our code collection: <u>https://mhpi.github.io/</u> New framwork: <u>https://mhpi.github.io/frameworks/</u>

Hydroml.org HydroML Symposium, May 22-26, 2022, Penn State HydroML 2, May 2023, Berkeley, CA HydroML 3, May 2024, near PNNL, WA

Yalan Song, Farshid Rahmani, Tadd Bindas, Jiangtao Liu, Doaa Aboelyazeed, Kamlesh Sawadekar, Dapeng Feng,

Overview

- I. Data-Driven Machine Learning (ML)
- **II.** *Physics-informed* ("Differentiable") modeling (DM)

Check for updates

III. Future Outlook

Perspective

Check for updates

Differentiable modelling to unify machine learning and physical models for geosciences

Chaopeng Shen ©¹⊠, Alison P. Appling ©², Pierre Gentine ©³, Toshiyuki Bandai ©⁴, Hoshin Gupta⁵, Alexandre Tartakovsky ©⁶, Marco Baity-Jesi⁷, Fabrizio Fenicia⁷, Daniel Kifer⁸, Li Li ©¹, Xiaofeng Liu ©¹, Wei Ren⁹, Yi Zheng¹⁰, Ciaran J. Harman¹¹, Martyn Clark¹², Matthew Farthing¹³, Dapeng Feng ©¹, Praveen Kumar^{6,14}, Doaa Aboelyazeed ©¹, Farshid Rahmani ©¹, Yalan Song ©¹, Hylke E. Beck¹⁵, Tadd Bindas¹, Dipankar Dwivedi¹⁶, Kuai Fang¹⁷, Marvin Höge Ö⁷, Chris Rackauckas¹⁸, Binayak Mohanty¹⁰, Tirthankar Roy²⁰, Chonggang Xu²¹ & Kathryn Lawson ©¹

ART	⁻ IC	LE

https://doi.org/10.1038/s41467-021-26107-z OPEN

MMUNICATIONS

From calibration to parameter learning: Harnessing the scaling effects of big data in geoscientific modeling

Wen-Ping Tsai ^(b) ¹, Dapeng Feng¹, Ming Pan ^(b) ^{2,3}, Hylke Beck ^(b) ⁴, Kathryn Lawson ^(b) ^{1,5}, Yuan Yang ^(b) ^{6,7}, Jiangtao Liu¹ & Chaopeng Shen ^(b) ^{1,5 \infty}

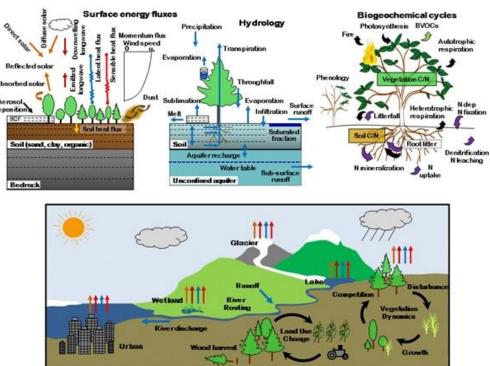
Sensitivity-Constrained Fourier Neural Operators for Forward and inverse Problems in Parametric Differential Equations

Abdolmehdi Behroozi, Chaopeng Shen, Daniel Kifer

🚞 Published: 22 Jan 2025, Last Modified: 05 Feb 2025 🛛 🖆 ICLR 2025 💿 Everyone 📑 Revisions 🛛 🗏 BibTeX 💿 CC BY 4.0

About me

- Ph.D. Michigan State in Env. Engr.
- Postdoc Lawrence Berkeley National Lab
- 12 current group members + 3 incoming – 1 graduating.
- "Grew up" as a process-based modeler, solving PDEs. See both sides of the story.
- Working with ML since 2016.



Purely data-driven ML in water

• Examined comparison with in-situ data & long-term projections

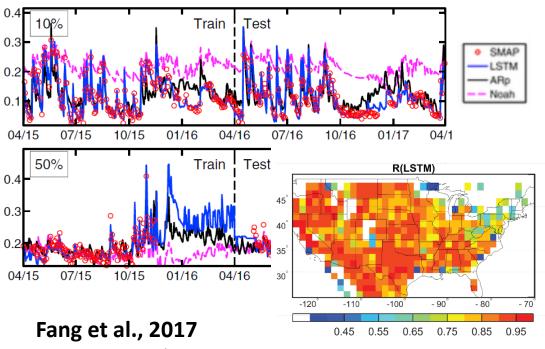
Geophysical Research Letters

Research Letter 🛛 🔂 Full Access

Prolongation of SMAP to Spatiotemporally Seamless Coverage of Continental U.S. Using a Deep Learning Neural Network

Kuai Fang, Chaopeng Shen 💌, Daniel Kifer, Xiao Yang

First published: 16 October 2017 | https://doi.org/10.1002/2017GL075619 | Cited by: 3



Water Resources Research

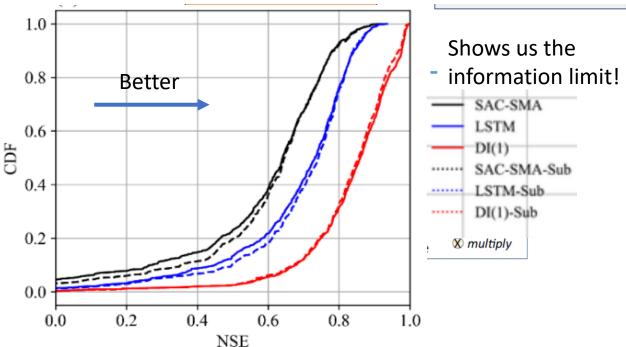
RESEARCH ARTICLE

10.1029/2019WR026793

Special Section: Big Data & Machine Learning in Water Sciences: Recent Progress and Their Use in Advancing Science Enhancing Streamflow Forecast and Extracting Insights Using Long-Short Term Memory Networks With Data Integration at Continental Scales

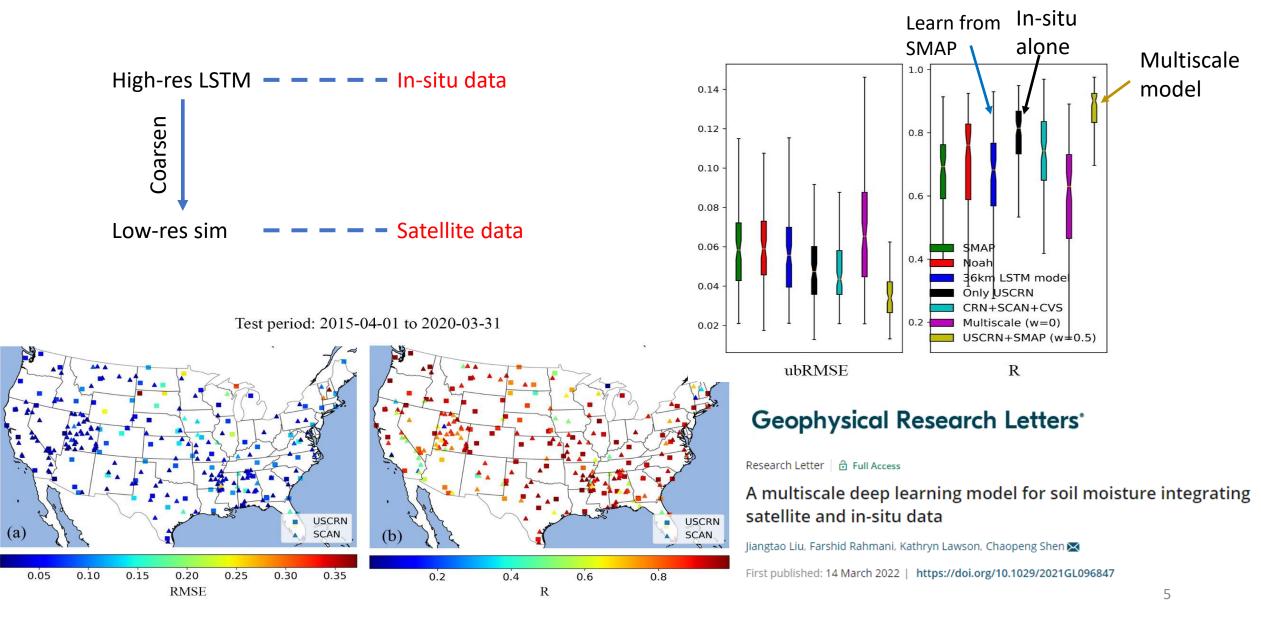
Dapeng Feng¹, Kuai Fang^{1,2}, and Chaopeng Shen¹

¹Civil and Environmental Engineering, Pennsylvania State University, State College, PA, USA, ²Now at: Earth System Science, Stanford University, Stanford, CA, USA

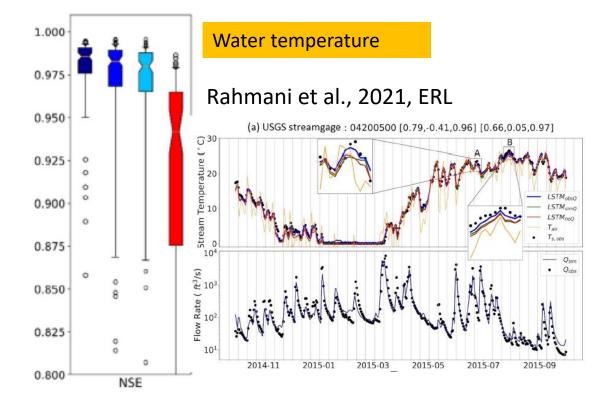


doi: 10.1002/2017gl075619

Multiscale soil moisture – learning from two teachers



LSTM applications in water quality



FISEVIER

Research papers

Journal of Hydrology Volume 639, August 2024, 131573

Suspendid Sediment Conc

Deep learning insights into suspended sediment concentrations across the conterminous United States: Strengths and limitations

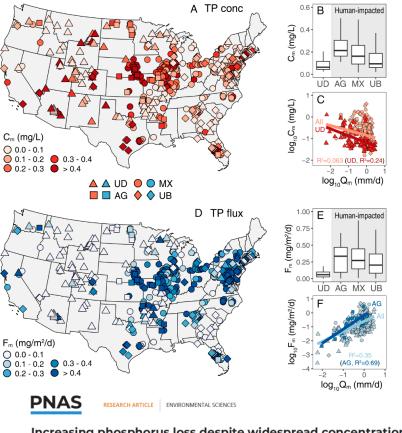
Yalan Song ° 옷 ⊠, Piyaphat Chaemchuen °, Farshid Rahmani °, Wei Zhi °, Li Li °, Xiaofeng Liu °, Elizabeth Boyer ^b, Tadd Bindas °, Kathryn Lawson °, Chaopeng Shen ° 옷 ⊠

A deep learning-based novel approach to generate continuous daily stream nitrate concentration for nitrate data-sparse watersheds

Gourab Kumer Saha^a, Farshid Rahmani^b, Chaopeng Shen^b, Li Li^b, Raj Cibin^{a,b,*}

Department of Agricultural and Biological Engineering, The Pennsylvania State University, United States of America Department of Civil and Environmental Engineering, The Pennsylvania State University, United States of America

Dissolved Oxygen & Total Phosphorous (Wei Zhi & Li Li)



Increasing phosphorus loss despite widespread concentration decline in US rivers

Wel Zhi[&]¹ 🕘, Hubert Baniecki^{ca} 🗐, Jiangtao Liu[®] 🕘, Elizabeth Boyer⁴ 🔞, Chaopeng Shen[®] 🕲, Gary Shenk[®] 😳, Xlaofeng Liu[®], and Li Li^{®1} 💿

Affiliations are included on p. 8.

Edited by Nils Stenseth, Universitetet I Oslo, Oslo, Norway; received January 30, 2024; accepted October 10, 2024

nature water

Explore content Y About the journal Y Publish with us Y Subscribe

nature > nature water > articles > article

Article Published: 09 March 2023

Check for updates

Temperature outweighs light and flow as the predominant driver of dissolved oxygen in US rivers

<u>Wei Zhi, Wenyu Ouyang, Chaopeng Shen</u> & <u>Li Li</u> 🗠

Nature Water 1, 249–260 (2023) Cite this article

6

6

The "Good Genes of Al"

Genetic absorption of AI into our domains!

Al Geneenables...Large-depth NNsHighly-complex functionsMinibatches and
GPU concurrencyHigh data throughputDifferentiable
programming"End-to-end" training of
large NNsKnowledge management, etc.....

Significant limitations

- Not interpretable --- No physical concepts
- **Right results for the wrong reason** (sensitivity)?
- Unseen cases? Data-scarce regions?
- Scenarios?
- Cannot answer specific questions

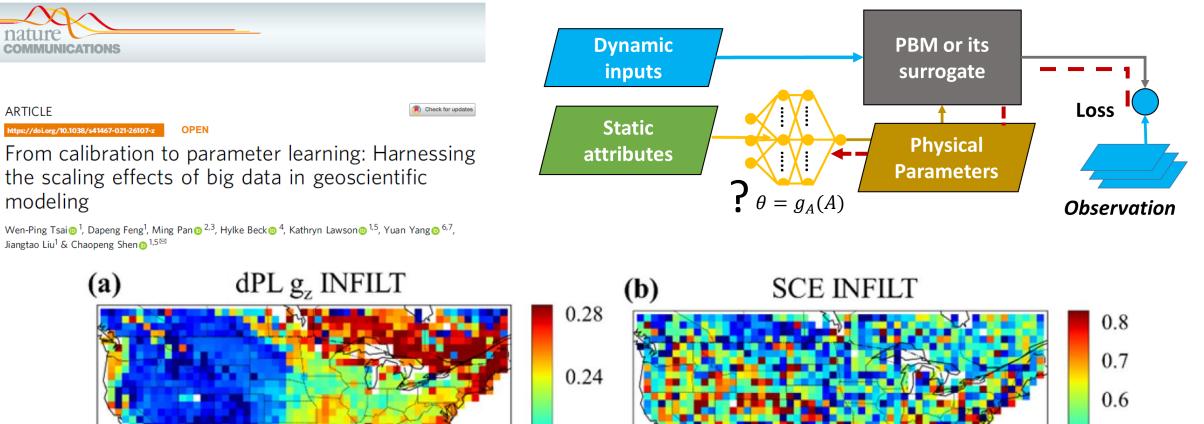
What if we can seamlessly Learn from connect NNs with process big data equations and learn from big data?

II. Physics-informed DL -- Differentiable Parameter Learning

Address the "How" in Part III!

0.5

0.4



0.20

0.16

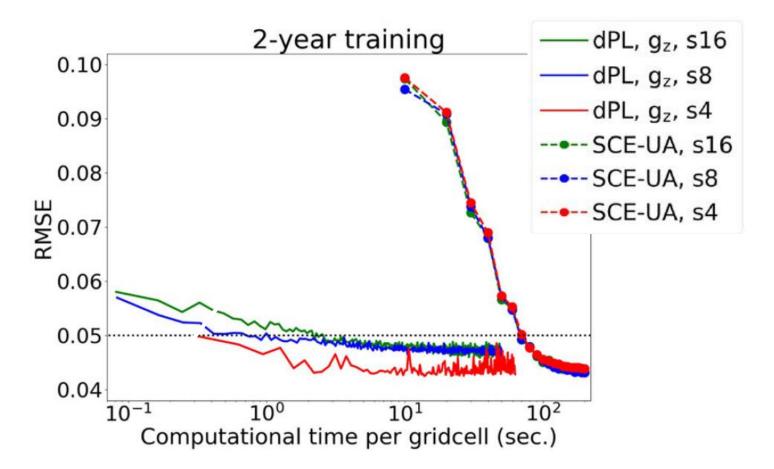
Regionalized parameterization -- one technician learns to fix everyone's houses

Site-by-site calibration

Data scaling relationships (network effect?)

1.dPL = SCEUA for lowest RMSE

- 2.dPL scales better with more data
- 3.Orders of magnitude more efficient: 100 proc 2-3 days vs. 1 GPU 2 hours
- 4. (not shown) better results for untrained variables and better spatial generalization than traditional approach!

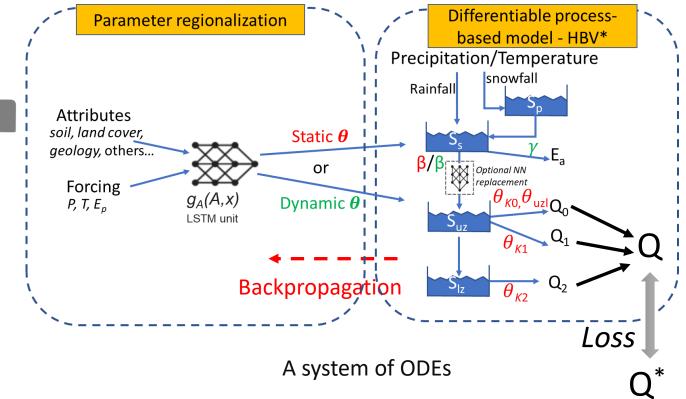


Tsai et al. 2021, Nature Communications doi: 10.1038/s41467-021-26107-z 9

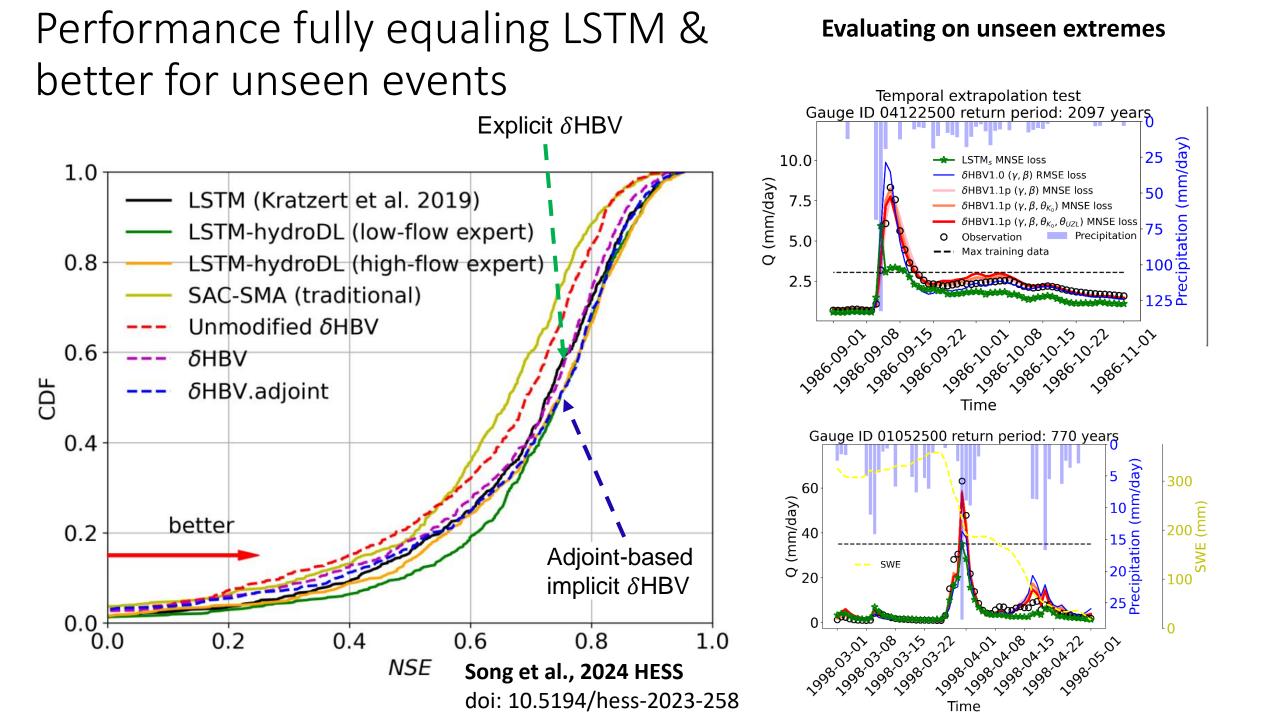
What is Differentiable Modeling?

DM $g_1 = ?$ g_2 $g_3 = ?$ g_4 g_5 g_6 g_7 g_8 yPurely data-driven ML: $y = g^W(x)$

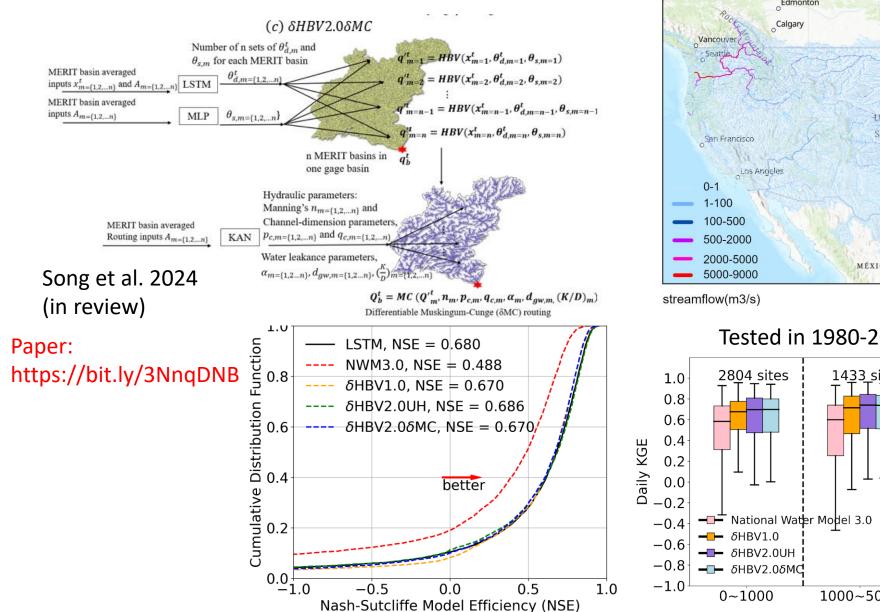
- NNs ("?") mixed w/ process-based equations (priors)
- Breaks a problem into parts, with some as priors
- "end-to-end" training on big data
- The priors constrain the learning to an interpretable scope.
- Can be used a forward simulator as well as



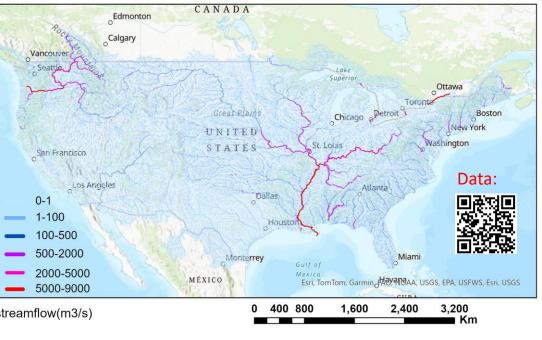
This is NOT physics-informed neural network (PINN)!



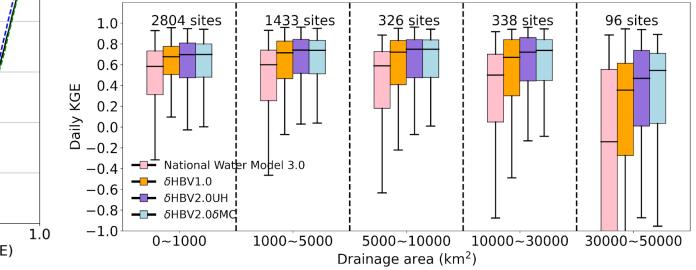
Large-scale, operational



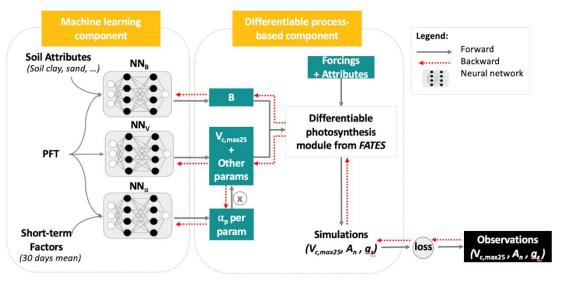
The mean seamless daily streamflow of 1995WY on the MERIT river network



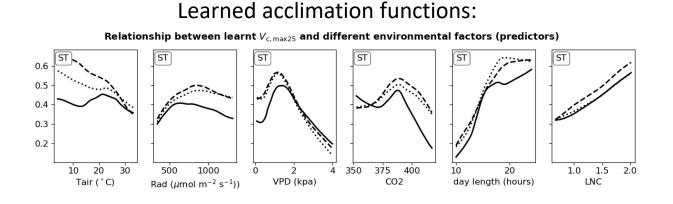
Tested in 1980-2019 on 4,997 GAGES-II stations



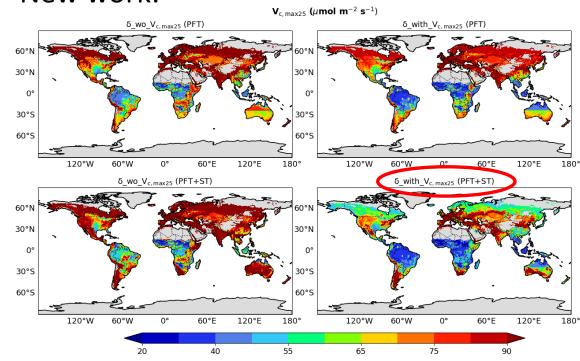
Why is DM transformative? <u>Widely & generically applicable</u>



Building on our previous work: **Aboelyazeed et al., 2023 Biogeosciences** doi: 10.5194/bg-20-2671-2023



Differentiable ecosystem modeling New work:

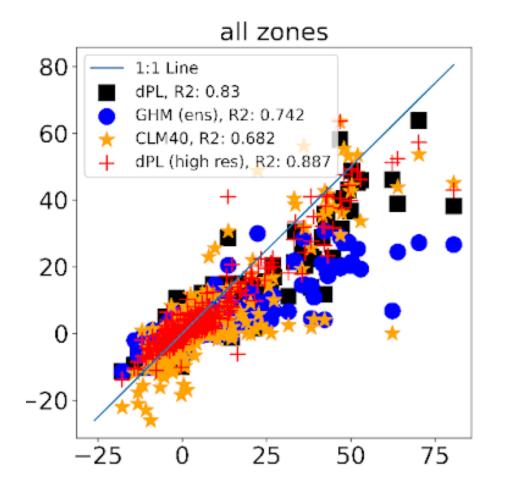


$\delta_{\text{PFT}}(V_{\text{data}})$	$\delta_{PFT+Env}$	$\delta_{\text{PFT+Env}}(V_{\text{data}})$
-18.47	3.14	-17.47

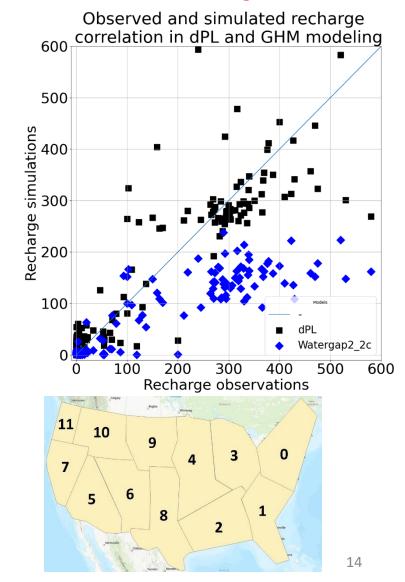
w/ Acclimation

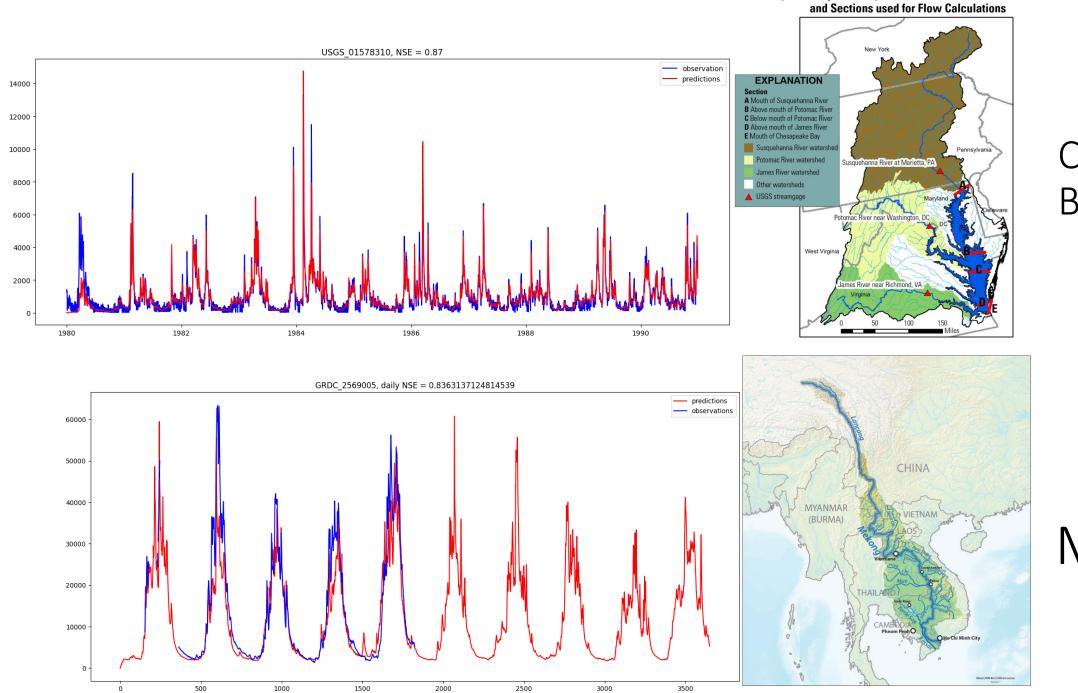
Training on both discharge & temperature

Baseflow trends



Recharge





Chesapeake Bay

Major Chesapeake Bay Watersheds, Streamflow Stations,

Mekong

Outlooks for WQ

- Our experiences from hydrology can directly translate into WQ modeling.
- Differentiable WQ modeling
- Scale-relevant predictions & diagnosis (landform, manage practices) w/ UQ
- Knowledge discovery (need priors!) learn from data what it can describe

50 -

45

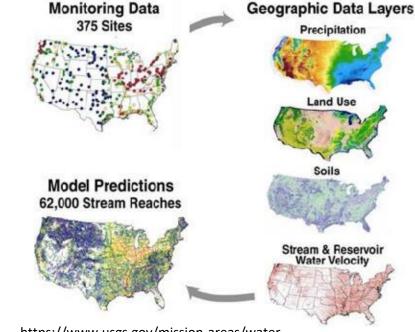
-atitude 32

30

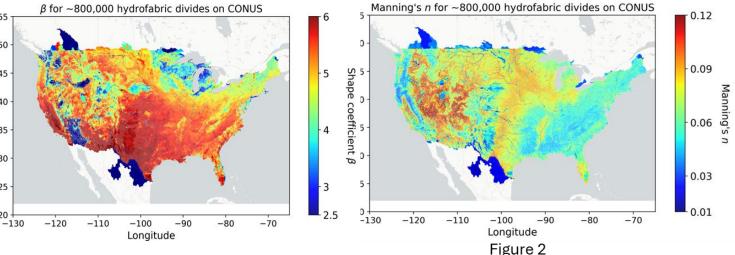
25 -

20 -

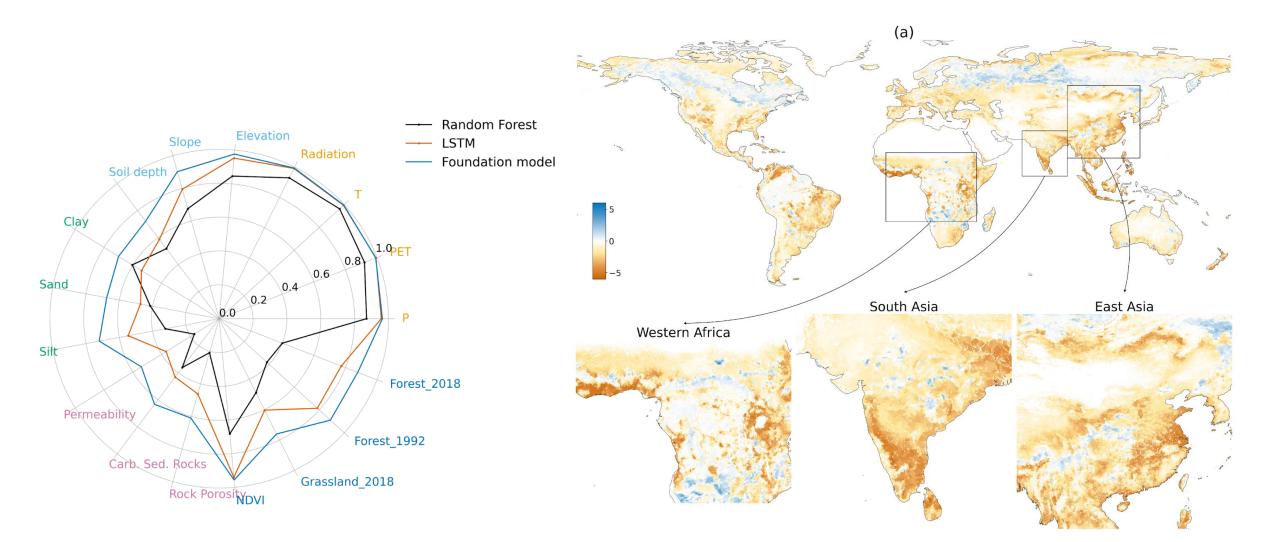
- Foundation model for capturing coevolution
- Solving PDEs & Fluids



https://www.usgs.gov/mission-areas/waterresources/science/everything-you-need-know-about-sparrow

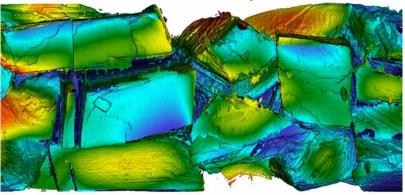


Foundation model: capturing the joint distribution of the landscape

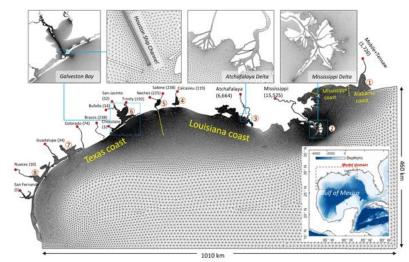


Outlooks --- what will be enabled in the future?

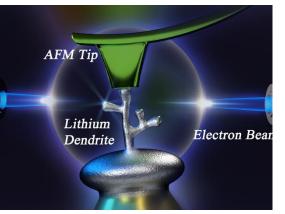
Reactive transport



https://www.alcf.anl.gov/science/projects/chombo-crunchmodeling-pore-scale-reactive-transport-carbon-sequestration

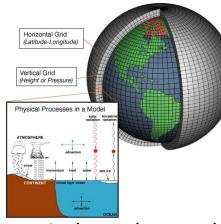


https://os.copernicus.org/articles/15/951/2019/



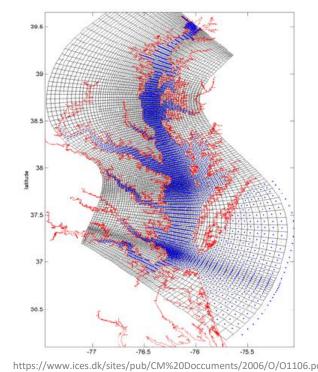
https://www.psu.edu/news/research/story/new-methodstudy-lithium-dendrites-could-lead-better-safer-batteries/

Battery dendrites



Numerical weather models

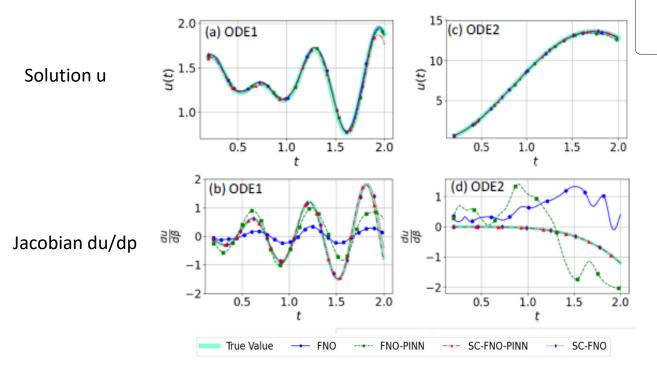
Lake circulation



How can we do it faster & cheaper?

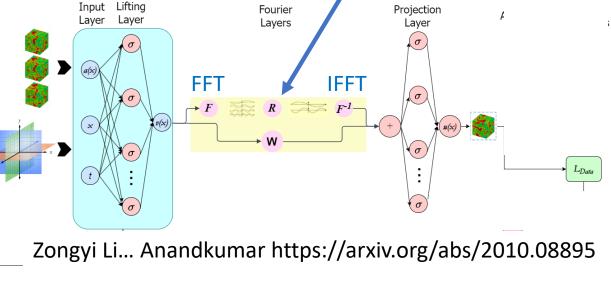
Al-fused Neural operators!

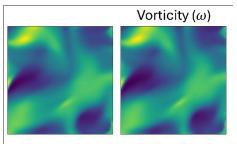
- du/dt = f(u, t, x, p)
- Fourier Neural Operator (FNO) solves PDEs: >O(10⁴) faster!
- No time stepping is required!
- But but but, sensitivity (du/dp) often wrong
- Training via experience.... Very data intensive, what about training via instruction?

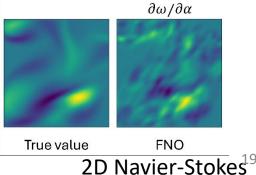


FNO learns operators in Fourier space

--- differential operators are multiplications in Freq space



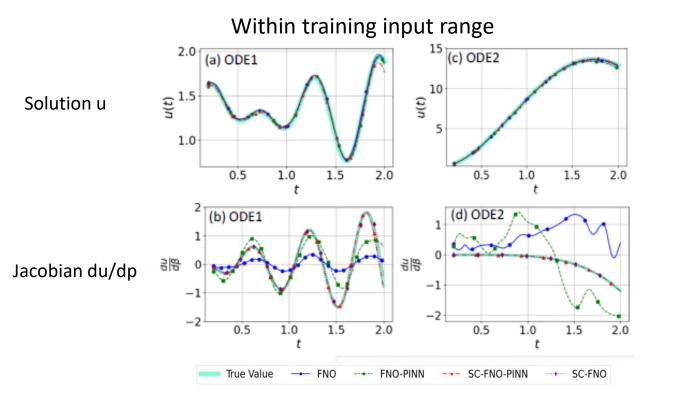




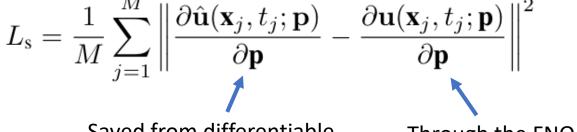
Behroozi et al., 2025 International Conference on Learning Representations (ICLR 2025)

Adding Jacobian into training: sensitivity much improved

- du/dt = f(u, t, x, p) (w/ a differentiable solver)
- Novel idea: train on not only the solution but also the Jacobian **du/dp**, leveraging our differentiable solver!

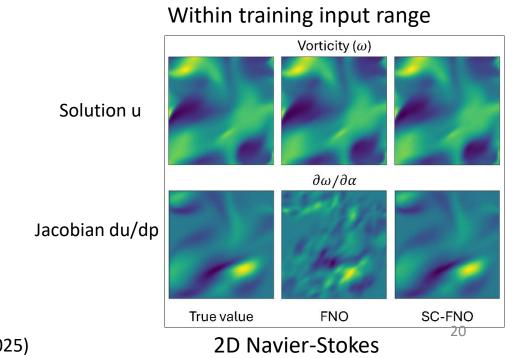


Adding the Jacobian loss (to the main solution loss):



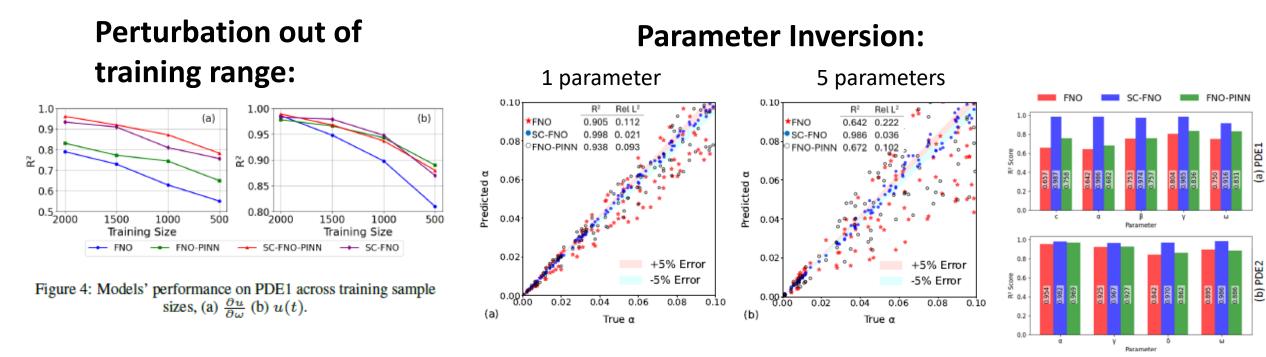
Saved from differentiable solver (w/ FD, AD or Adjoint)

Through the FNO



Behroozi et al., 2025 International Conference on Learning Representations (ICLR 2025)

Robust for perturbation which allows successful inversion (SC-FNO is NOT PINN)



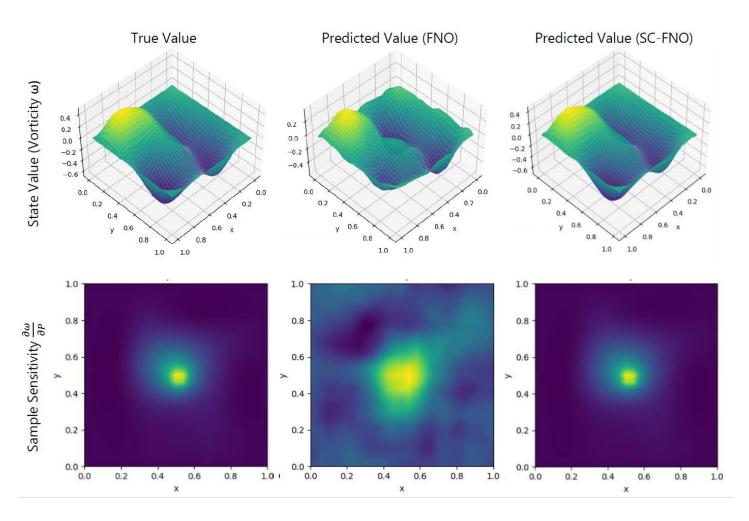
SC-FNO is NOT PINN.

PINN loss is only slightly useful: du/dp not in the equation! Figure 1: Inversion of the parameter α in PDE1 using FNO and SC-FNO models (a) single parameter inversion, (b) simultaneous multi-parameter inversion.

Figure 2: Simultaneous multi-parameter inversion accuracy for PDEs 1 and 2 using FNO and SC-FNO.

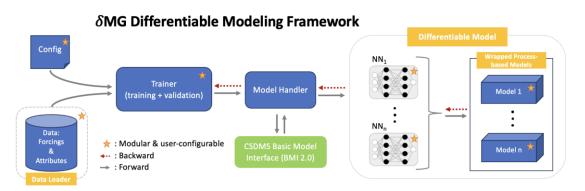
The approach applies to distributed parameters (unpublished) --- forced Reynolds-Averaged Navier Stokes (RANS with spatially-varying forcing)

- 10⁴ inputs+parameters!
- Default FNO --- not for inversion
- SC-FNO --- highly accurate solution & gradients



Summary

- Differentiable model is a game changer for continentalscale flood prediction or global scale climate change impact assessment for the water sector.
- SC-neural operator will serve very efficient and robust surrogate models.
- We now provide a unified differentiable modeling framework, δMG:



Our Code Collection: <u>https://mhpi.github.io/</u> δ MG: <u>https://mhpi.github.io/codes/frameworks/</u>

Poster (Lonzarich):

IN33B-2071

Water Resources Podcast: youtu.be/rzVU03OAIdQ

Apple Finch Pudding Science Podcast: <u>https://youtu.be/nl30u65XZro</u>

AGU TV: <u>https://youtu.be/BIBBIM0BWaU</u>

Flood Forecasting Workshop: https://bit.ly/3wvLV6N

Chaopeng Shen¹

Water Resources Research

REVIEW ARTICLE 10.1029/2018WR022643

A Transdisciplinary Review of Deep Learning Research and Its Relevance for Water Resources Scientists

nature reviews earth & environmen

Special Section: Big Data & Machine Learning in Water Sciences: Recent

Progress and Their Use in Advancing Science ¹Civil and Environmental Engineering, Pennsylvania State University, University Park, PA, USA

	\sim
nature	\sim
COMMUNIC	CATIONS

ARTICLE

From calibration to parameter learning: Harnessing the scaling effects of big data in geoscientific modeling

Wen-Ping Tsai⊜ ¹, Dapeng Feng¹, Ming Pan⊜ ^{2,3}, Hylke Beck⊚ ⁴, Kathryn Lawson⊚ ^{1,5}, Yuan Yang⊚ ^{6,7}, Jiangtao Liu¹ & Chaopeng Shen⊚ ^{1,588}

Check for updates

Differentiable modelling to unify machine learning and physical models for geosciences

Chaopeng Shen Θ^{in} , Alison P. Appling Θ^{in} , Pierre Gentine Θ^{in} , Toshhyidi Bandai Θ^{in} , Hoshini Gupta^{*}, Alkanande Tartakovsky Θ^{in} , Anco Balty Jeari, Fabrichi Scheinici Janei Kiffer, Li Li O.¹, Xiolong Liu O.¹ Win Ron^{*}, Yi Zheng^{*}, Ciaran J. Harrman^{*}, Martyn Clark^{*}, Matthew Fantling^{*}, Dapeng Feng Θ^{in} , Praveen Kuma^{*+in}, Doad Abodyazood⁰, Frankind Rahmai Ol.¹ Yalah Song Dⁱ, Hylko E. Bock^{**}, Tadd Bindar, Djukanka Dwivodi^{*}, Kuai Fang^{**}, Marvin Hoge Θ^{in} , Chris Rackauckas[®], Binayak Mohanty[®], Tirthankar Roy[®], Chonggang Xu[®] & Kathyr Lawson Θ^{in}

Increasing phosphorus loss despite widespread concentration decline in US rivers

Wei Zhi^{k,1} ¹, Hubert Baniecki^{ce} ¹, Jiangtao Liu^k ¹, Elizabeth Boyer⁴⁷ ¹, Chaopeng Shen^k ¹, Gary Shenk⁴ ¹, Xiaofeng Liu^k, and Li Li^{k,1} ¹

Edited by Nils Stenseth, Universitetet i Oslo, Oslo, Norway; received January 30, 2024; accepted October 10, 2024

ttps://doi.org/10.1028/s42017.022.00

Check for update