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Overview

I. Data-Driven Machine Learning (ML)

II. Physics-informed (“Differentiable”) modeling (DM)

III. Future Outlook
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About me

• Ph.D. Michigan State in Env. Engr.

• Postdoc Lawrence Berkeley National Lab

• 12 current group members + 3 incoming 
– 1 graduating.
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• “Grew up” as a process-based modeler, 
solving PDEs. See both sides of the story.

• Working with ML since 2016. 



Better

Shows us the 
information limit!

Purely data-driven ML in water
• Examined comparison with in-situ data & long-term projections

Fang et al., 2017
doi: 10.1002/2017gl075619 4



Multiscale soil moisture – learning from two teachers

High-res LSTM In-situ data
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Low-res sim Satellite data
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Multiscale 
model

In-situ 
alone

Learn from 
SMAP
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Dissolved Oxygen & Total Phosphorous
(Wei Zhi & Li Li)

Nitrate time series

LSTM applications in water quality
Water temperature

Rahmani et al., 2021, ERL
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Suspendid Sediment Conc



The “Good Genes of AI”

AI Gene enables…

Large-depth NNs Highly-complex functions

Minibatches and 

GPU concurrency

High data throughput

Differentiable 

programming

“End-to-end” training of 

large NNs

Knowledge management, etc……

Genetic absorption of 
AI into our domains!

Learn from 
big data

Significant limitations

What if we can seamlessly 
connect NNs with process 
equations and learn from big 
data?

• Not interpretable --- No physical concepts
• Right results for the wrong reason 

(sensitivity)?
• Unseen cases? Data-scarce regions?
• Scenarios?
• Cannot answer specific questions
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II. Physics-informed DL -- Differentiable Parameter Learning

𝜃 = 𝑔𝐴(𝐴)

𝜃 = 𝑔𝑧(𝐴, 𝑥
ℎ, 𝑧ℎ)

?

Address the “How” in Part III!

Regionalized parameterization 
-- one technician learns to fix everyone’s houses 8

Site-by-site calibration
-- we train a new technician for every house



Data scaling relationships (network effect?)

Tsai et al. 2021, Nature Communications
doi: 10.1038/s41467-021-26107-z

1.dPL = SCEUA for lowest RMSE

2.dPL scales better with more data

3.Orders of magnitude more efficient:
100 proc 2-3 days vs. 1 GPU 2 hours

4. (not shown) better results for 
untrained variables and better 
spatial generalization than 
traditional approach!
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DM

• NNs (“?”) mixed w/ process-based 
equations (priors)

• Breaks a problem into parts, with 
some as priors

• “end-to-end” training on big data
• The priors constrain the learning to an 

interpretable scope.
• Can be used a forward simulator as 

well as  

What is Differentiable Modeling?

Backpropagation

Q

Q*

Loss
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A system of ODEs

This is NOT physics-informed 
neural network (PINN)!



Explicit 𝛿HBV

Adjoint-based 

implicit 𝛿HBV

Performance fully equaling LSTM & 
better for unseen events

Song et al., 2024 HESS
doi: 10.5194/hess-2023-258
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Evaluating on unseen extremes



The mean seamless daily streamflow of 1995WY 
on the MERIT river network 

Tested in 1980-2019 on 4,997 GAGES-II stations

Large-scale, operational

Song et al. 2024 
(in review)

Paper: 
https://bit.ly/3NnqDNB

Data:  



Building on our previous work:
Aboelyazeed et al., 2023 Biogeosciences
doi: 10.5194/bg-20-2671-2023

Learned acclimation functions:

Why is DM transformative?
Widely & generically applicable

w/ Acclimation

Differentiable ecosystem modeling
New work:
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Training on both discharge & temperature
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RechargeBaseflow trends



Mekong
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Chesapeake 
Bay



Outlooks for WQ
Our experiences from hydrology can directly 
translate into WQ modeling.

• Differentiable WQ modeling

• Scale-relevant predictions & diagnosis 
(landform, manage practices) w/ UQ

• Knowledge discovery
(need priors!) learn from data what it can 
describe

• Foundation model for capturing the 
coevolution

• Solving PDEs & Fluids

https://www.usgs.gov/mission-areas/water-
resources/science/everything-you-need-know-about-sparrow



Foundation model: capturing the joint distribution 
of the landscape



Outlooks --- what will be enabled in the future?

https://www.psu.edu/news/research/story/new-method-
study-lithium-dendrites-could-lead-better-safer-batteries/

https://www.ices.dk/sites/pub/CM%20Doccuments/2006/O/O1106.pdf

https://os.copernicus.org/articles/15/951/2019/

https://www.alcf.anl.gov/science/projects/chombo-crunch-
modeling-pore-scale-reactive-transport-carbon-sequestration
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Coastal flooding

Reactive transport Lake circulation

Battery dendrites

Numerical weather models

How can we do it 
faster & cheaper?



AI-fused Neural operators!
• du/dt = f(u, t, x, p)
• Fourier Neural Operator (FNO) solves PDEs: >O(104) faster!
• No time stepping is required!
• …. But but but, sensitivity (du/dp) often wrong
• Training via experience…. Very data intensive, what about 

training via instruction?

FNO learns operators in Fourier space 
--- differential operators are multiplications in Freq space

2D Navier-Stokes
Behroozi et al., 2025 International Conference on Learning Representations (ICLR 2025)

Jacobian du/dp

State Variable                 Sensitivity

19

Solution u

FFT

Zongyi Li… Anandkumar https://arxiv.org/abs/2010.08895

     

IFFT



Adding Jacobian into training: 
sensitivity much improved

2D Navier-StokesBehroozi et al., 2025 International Conference on Learning Representations (ICLR 2025)

Jacobian du/dp

State Variable                 Sensitivity
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Solution u

• du/dt = f(u, t, x, p)      (w/ a differentiable solver)
• Novel idea: train on not only the solution but also the 

Jacobian du/dp, leveraging our differentiable solver!

Adding the Jacobian loss (to the main solution loss):

Saved from differentiable 
solver (w/ FD, AD or Adjoint)

Through the FNO
Within training input range

Within training input range

Solution u

Jacobian du/dp



Robust for perturbation which allows 
successful inversion (SC-FNO is NOT PINN)
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1 parameter 5 parameters

Parameter Inversion:Perturbation out of 
training range:

SC-FNO is NOT PINN.

PINN loss is only slightly useful: 
du/dp not in the equation!



The approach applies to distributed parameters 
(unpublished) --- forced Reynolds-Averaged Navier 
Stokes (RANS with spatially-varying forcing)

• 104 inputs+parameters!

• Default FNO --- not for 
inversion

• SC-FNO --- highly accurate 
solution & gradients
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A systematic way to grow our model…

PBM PBM+dPL

Fully-grown differentiable model
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Summary
• Differentiable model is a game changer for continental-

scale flood prediction or global scale climate change 
impact assessment for the water sector.

• SC-neural operator will serve very efficient and robust 
surrogate models.

• We now provide a unified differentiable modeling 
framework, δMG:
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Water Resources Podcast: youtu.be/rzVU03OAIdQ

Apple Finch Pudding Science Podcast: 
https://youtu.be/nl30u65XZro

AGU TV: https://youtu.be/BIBBlM0BWaU

Flood Forecasting Workshop: 
https://bit.ly/3wvLV6N

Our Code Collection: https://mhpi.github.io/
𝛿MG: https://mhpi.github.io/codes/frameworks/

Poster (Lonzarich): 
IN33B-2071

https://agu.confex.com/agu/fm18/prelim.cgi/Session/63801
https://agu.confex.com/agu/fm18/prelim.cgi/Session/63801
https://agu.confex.com/agu/fm18/prelim.cgi/Session/63801
https://bit.ly/3wvLV6N
https://mhpi.github.io/
https://mhpi.github.io/codes/frameworks/
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