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Why ML? Predicting habitat quality in unmonitored areas

Physical habitat / ‘sediment’ is identified as a top stressor of stream
health in the Chesapeake Bay watershed (Fanelli et al., 2022)

» #1 reason for ecological use impairments by mile — 303(d)

Study goals:
1. Where is physical habitat good/bad?
% Supervised continuous predictions
2. Are there distinct dimensions of physical habitat?
% Unsupervised dimensionality reduction and clustering

3. How is habitat affected by available management intervention
pathways?
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Why ML? Predictions allow model overlays = USGS

Example regulatory process
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» Restorations that focus on restricting sediment, without
addressing flows or in-channel hydromorphic diversity, are
unlikely to improve the habitat metrics that justified the TMDL.
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Why ML? They are only the means, not the end = USGS

Focus of paper is management implications, not ML methods
> If ML methods distracted from that focus, they were omitted

Tree-based: random forest, XGBoost, lightGBM, H20 AutoML, and
ensemble stacking ~comparable performances

« >20,000 observations, synoptic design
» Adjusted for mean-centered bias (Belitz and Stackelberg, 2021)

Tested many explainable Al techniques, most not in paper 7
« Expected relationships, nothing ‘novel’ o] ——
» Used for internal model consistency/validation -
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Aligning with CBP goals? Restoration targeting and design

Modeled metrics are routinely used in
field monitoring and well-known by
stakeholders.

Models can help prioritize and identify
areas for restoration or conservation

(by itself or with co-occurring stressors).
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Challenges: Input data quality

Limited by quality of input data

« Metrics are visually scored, semi-quantitative,
subjective 2a.  Embeddedness—High Gradient

* Field-measurement uncertainty accounted for
~80% of RMSE in our ML models
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For Use in Streams and Wadeable Rivers:
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Second Edition
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(high gradient) sediment. Layering of sediment. sediment. fme sediment.
cobble provides diversity of
niche space.
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Challenges: Causal questions need causal methods

Judea Pearl’s Causal Hierarchy

Layer Typical Modified from
. . . .. : 1
(Symbolic) Activity Typical Question Example Research Question Statistical Methods Bareinbom et al 2022
. Where are areas quality physical . Traditional
L4 ASSSE'TB)O il Seeing What is? habitat across the Chesapeake Bay U Superv!seg 1\/”_ } non-causal
y watershed? nsupervise ML
Reinforcement Learning
L2 Ir;)ter\(/ientlonal Doing What if | do? A IS CLE krlert?f\gl Sliey e Randomized Controlled Trials |
(yldo(x), c) abitat® A/B Testing
“Observational Experiments”
| Causal
- methods
- ) . ) Causal Mediation/Path
L Counterfactual JieaiiinG What if instead? What would physical habitat be if there Synthetic Control
3 P(y,lx’,y") Why? was no anthropogenic effects at all? Causal ML

» Questions at higher layers cannot be accurately answered with information and methods from lower levels

« Traditional ML can be accurate for “What is?” Qs (L,) and inaccurate for “What if?” or counterfactual scenario Qs (L,, L3)
« ML methods can infer info for a variable without it being in the dataset (Kratzert et al., 20192)
» Correlation, confounding, and hierarchical dependency causes problems for estimating cause-effect L,, L; scenarios, less so for L, predictions

» But what about progress-guided DL models pre-trained on cause-effect process models?

; a USGS

1Bareinboim, E., Correa, J. D., Ibeling, D., & Icard, T. (2022). On Pearl’s hierarchy and the foundations of causal inference. In Probabilistic and causal inference: the works of Judea Pearl, Association for Computing Machinery, 2021. (pp. 507-556). . P handi 1d
2Kratzert, F., Klotz, D., Herrnegger, M., Sampson, A. K., Hochreiter, S., & Nearing, G. S. (2019). Toward improved predictions in ungauged basins: Exploiting the power of machine learning. Water Resources Research, 55, 11344-11354. science lor a changing wor,



Challenges: Causal machine learning is rapidly developing

» Causal Inference, Causal Machine Learning, and Causal Discovery

Used largely in public health, econometrics, genomics, nascent in ecology (some private co.,
Google, Uber, Microsoft)

» Causal inference/ML techniques are specifically designed to accurately
estimate cause and effect

Propensity score matching/weighting

» This is a rapidly developing field, and not all methods are suitable (yet)
Depends on your dataset, specific questions, and assumptions
Lots of nuance, little “off-the-shelf’ accessibility

Causal forests

Double-machine learning

Targeted Maximum Likelihood Estimation (TMLE)

Highly Adaptive LASSO (HAL)

Causal Impact (using Bayesian structural time-series models)
Deep End-to-end Causal Inference (DECI)

Among many others...
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