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Why ML? Predicting habitat quality in unmonitored areas

Physical habitat / ‘sediment’ is identified as a top stressor of stream 
health in the Chesapeake Bay watershed (Fanelli et al., 2022)

➢ #1 reason for ecological use impairments by mile – 303(d)

Study goals:

1. Where is physical habitat good/bad? 

❖ Supervised continuous predictions

2. Are there distinct dimensions of physical habitat?

❖ Unsupervised dimensionality reduction and clustering

3. How is habitat affected by available management intervention 
pathways?
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Example regulatory process

Is degraded habitat caused by a sediment supply problem? 

• Will restricting sediment supply improve habitat?

• What about confounding problems with flow alteration?

➢ Restorations that focus on restricting sediment, without 
addressing flows or in-channel hydromorphic diversity, are 
unlikely to improve the habitat metrics that justified the TMDL.

Why ML? Predictions allow model overlays
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Why ML? They are only the means, not the end

SHAP plots / breakdowns
VIVID Variable Interaction 

network

Focus of paper is management implications, not ML methods

➢ If ML methods distracted from that focus, they were omitted

Tree-based: random forest, XGBoost, lightGBM, H2O AutoML, and 
     ensemble stacking ~comparable performances

• >20,000 observations, synoptic design

• Adjusted for mean-centered bias (Belitz and Stackelberg, 2021)

Tested many explainable AI techniques, most not in paper

• Expected relationships, nothing ‘novel’

• Used for internal model consistency/validation

Preliminary Information-Subject to Revision. Not for Citation or Distribution
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Aligning with CBP goals? Restoration targeting and design

Modeled metrics are routinely used in 

field monitoring and well-known by 

stakeholders.

Models can help prioritize and identify 

areas for restoration or conservation 

(by itself or with co-occurring stressors).
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Challenges: Input data quality

Limited by quality of input data 

• Metrics are visually scored, semi-quantitative, 
subjective

• Field-measurement uncertainty accounted for 
~80% of RMSE in our ML models
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Layer

(Symbolic)

Typical 

Activity
Typical Question Example Research Question Statistical Methods 

𝐿1
Associational

𝑃 𝑦 𝑥
Seeing What is?

Where are areas quality physical 

habitat across the Chesapeake Bay 

watershed? 

Supervised /

Unsupervised ML

𝐿2
Interventional
𝑃 𝑦 𝑑𝑜 𝑥 , 𝑐

Doing What if I do?
How does dam removal affect physical 

habitat?

Reinforcement Learning

Randomized Controlled Trials

A/B Testing

“Observational Experiments”

𝐿3
Counterfactual

𝑃 𝑦𝑥 𝑥′, 𝑦′ Imagining
What if instead?

Why? 

What would physical habitat be if there 

was no anthropogenic effects at all?

Causal Mediation/Path

Synthetic Control

Causal ML

Challenges: Causal questions need causal methods

• Questions at higher layers cannot be accurately answered with information and methods from lower levels

• Traditional ML can be accurate for “What is?” Qs (𝐿1) and inaccurate for “What if?” or counterfactual scenario Qs (𝐿2, 𝐿3)
• ML methods can infer info for a variable without it being in the dataset (Kratzert et al., 20192)

• Correlation, confounding, and hierarchical dependency causes problems for estimating cause-effect 𝐿2, 𝐿3 scenarios, less so for 𝐿1 predictions

➢ But what about progress-guided DL models pre-trained on cause-effect process models?

Modified from 

Bareinbom et al 20221

Judea Pearl’s Causal Hierarchy 

1 Bareinboim, E., Correa, J. D., Ibeling, D., & Icard, T. (2022). On Pearl’s hierarchy and the foundations of causal inference. In Probabilistic and causal inference: the works of Judea Pearl, Association for Computing Machinery, 2021. (pp. 507-556).
2 Kratzert, F., Klotz, D., Herrnegger, M., Sampson, A. K., Hochreiter, S., & Nearing, G. S. (2019). Toward improved predictions in ungauged basins: Exploiting the power of machine learning. Water Resources Research, 55, 11344–11354. 

Traditional 

non-causal
ML

Causal 
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Challenges: Causal machine learning is rapidly developing

• Causal Inference, Causal Machine Learning, and Causal Discovery
• Used largely in public health, econometrics, genomics, nascent in ecology (some private co., 

Google, Uber, Microsoft)

• Causal inference/ML techniques are specifically designed to accurately 
estimate cause and effect

• Propensity score matching/weighting

• Causal forests

• Double-machine learning

• Targeted Maximum Likelihood Estimation (TMLE)

• Highly Adaptive LASSO (HAL)

• Causal Impact (using Bayesian structural time-series models)

• Deep End-to-end Causal Inference (DECI)

• Among many others…

• This is a rapidly developing field, and not all methods are suitable (yet)
• Depends on your dataset, specific questions, and assumptions

• Lots of nuance, little “off-the-shelf” accessibility

Useful intro texts to causal inference
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