

Physical habitat is more than a sediment issue: A multi-dimensional habitat assessment indicates new approaches for river management

STAC Workshop: Leveraging AI and ML 24 February 2025

Matthew Cashman

US Geological Survey Water Mission Area Earth Surface Processes Division mcashman@usgs.gov

Why ML? Predicting habitat quality in unmonitored areas

Research article

Physical habitat is more than a sediment issue: A multi-dimensional habitat assessment indicates new approaches for river management

Matthew J. Cashman^{a,*}, Gina Lee^b, Leah E. Staub^b, Michelle P. Katoski^c, Kelly O. Maloney^d

Study goals:

- 1. Where is physical habitat good/bad?
 - Supervised continuous predictions
- 2. Are there distinct dimensions of physical habitat?
 - Unsupervised dimensionality reduction and clustering
- 3. How is habitat affected by available management intervention pathways?

Why ML? Predictions allow model overlays

Is degraded habitat caused by a sediment supply problem?

- Will restricting sediment supply improve habitat?
- What about confounding problems with flow alteration?

Restorations that focus on restricting sediment, without addressing flows or in-channel hydromorphic diversity, are unlikely to improve the habitat metrics that justified the TMDL.

Why ML? They are only the means, not the end

Focus of paper is management implications, not ML methods

> If ML methods distracted from that focus, they were omitted

Tree-based: **random forest**, XGBoost, lightGBM, H2O AutoML, and ensemble stacking ~*comparable performances*

- >20,000 observations, synoptic design
- Adjusted for mean-centered bias (Belitz and Stackelberg, 2021)

Tested many explainable AI techniques, most not in paper

- · Expected relationships, nothing 'novel'
- Used for internal model consistency/validation

Preliminary Information-Subject to Revision. Not for Citation or Distribution

Aligning with CBP goals? Restoration targeting and design

Modeled metrics are routinely used in field monitoring and well-known by stakeholders.

Models can help prioritize and identify areas for restoration or conservation (by itself or with co-occurring stressors).

Challenges: Input data quality

Limited by quality of input data

- Metrics are visually scored, semi-quantitative, ٠ subjective
- Field-measurement uncertainty accounted for • ~80% of RMSE in our ML models

http://www.epa.gov/OWOW/monitoring/techmon.html

By:	Project Officer:					
Michael T. Barbour	Chris Faulkner					
Jeroen Gerritsen	Office of Water					
Blaine D. Snyder	USEPA					
James B. Stribling	401 M Street, NW					

2a. Embeddedness-High Gradient

Optimal Range

(William Taft, MI DNR) Poor Range

(William Taft, MI DNR)

	Habitat	Condition Category																			
	Parameter	Optimal					Su	bopti		Marginal					Poor						
	2.a Embeddedness (high gradient)	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of				Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment.					Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.				Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.						
l	SCORE	20 1	9 18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

6

Challenges: Causal questions need causal methods

Judea Pearl's Causal Hierarchy

	Layer (Symbolic)	Typical Activity	Typical Question	Example Research Question	Statistical Methods	Modified from Bareinbom et al 2022 ¹
L ₁	Associational $P(y x)$	Seeing	What is?	Where are areas quality physical habitat across the Chesapeake Bay watershed?	Supervised / Unsupervised ML	Traditional non-causal ML
L ₂	Interventional $P(y do(x),c)$	Doing	What if I do?	How does dam removal affect physical habitat?	Reinforcement Learning Randomized Controlled Trials A/B Testing "Observational Experiments"	Caucal
L ₃	Counterfactual $P(y_x x',y')$	Imagining	What if instead? Why?	What would physical habitat be if there was no anthropogenic effects at all?	Causal Mediation/Path Synthetic Control Causal ML	methods

- Questions at higher layers cannot be accurately answered with information and methods from lower levels
- Traditional ML can be accurate for "What is?" Qs (L_1) and inaccurate for "What if?" or counterfactual scenario Qs (L_2, L_3)
 - ML methods can infer info for a variable without it being in the dataset (Kratzert et al., 2019²)
 - Correlation, confounding, and hierarchical dependency causes problems for estimating cause-effect L₂, L₃ scenarios, less so for L₁ predictions
- But what about progress-guided DL models pre-trained on cause-effect process models?

Challenges: Causal machine learning is rapidly developing

- Causal Inference, Causal Machine Learning, and Causal Discovery
 - Used largely in public health, econometrics, genomics, nascent in ecology (some private co., Google, Uber, Microsoft)
- Causal inference/ML techniques are specifically designed to accurately estimate cause and effect
 - Propensity score matching/weighting
 - Causal forests
 - Double-machine learning
 - Targeted Maximum Likelihood Estimation (TMLE)
 - Highly Adaptive LASSO (HAL)
 - Causal Impact (using Bayesian structural time-series models)
 - Deep End-to-end Causal Inference (DECI)
 - Among many others...
- This is a rapidly developing field, and not all methods are suitable (yet)
 - Depends on your dataset, specific questions, and assumptions
 - · Lots of nuance, little "off-the-shelf" accessibility

Useful intro texts to causal inference

Scott Cunningham