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Objectives
1. Account for Variation in Types of Places

2. Accommodate Dynamic Growth Trajectories

3. Improve the Surface of Transition Probabilities

Goal
Make spatially and temporally accurate 
allocations of population and employment 
projections
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Deep Learning: Long Short-Term Memory 
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Capturing temporal information
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Deep Learning: Convolution
Capturing spatial information
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Transition Probability

Convolutional Long Short-Term Memory
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1. Model Dynamic Growth 

2. Improve the Surface of Transition Probabilities



Socio-Economic Data

Self Organizing Map
Account for Variation in Types of Places 
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Transition Probability

Integrated Model
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Block Types

1. 66 ‘Types’ of Census Blocks

2. Differences in growth rates

Quantization Error = 0.000005

Topographic Error = 0.3

Combined Error = 0.002





Transition Probability

Combined Model
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1. Distance to water
2. Distance to sewer
3. Regional employment

1. Distance to commercial hotspots
2. Distance to residential hotspots
3. Distance to urban clusters
4. Travel time
5. Landcover
6. Developed vs. Natural vs. Agricultural

LSTM Training

Static variables

Temporal variables (2000, 2010)

Response Variable
Residential vs. Commercial vs. No Change in 2020 2000 2010

2020



Predicted 2020 Commercial 
Development Probability
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Predicted 2020 Residential 
Development Probability
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Peter Claggett

pclagget@chesapeakebay.net

Dr. Michael Evans 

mevans@chesapeakeconservancy.org

Questions?
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Chesapeake Bay Land 
Change Model
(CBLCM)

1. Estimate extent of future development

2. Estimate future population and households 
on sewer and septic

3. Estimate future conversion of forest and 
farmland

Application
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May, 2018 Sentinel-2 image Aug, 2018 Sentinel-2 image Siamese U-Net Difference

LSTM Aug, 2018 prediction Normalized Diff (LSTM Aug, real Aug)
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April/May June/July Aug/Sep

Long Short-Term Memory 

Classification

Capturing temporal information



Deep Learning (AI)

Good at learning non-linearities, conditionality, and interactions
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