

Chesapeake Conservancy

Peter Claggett **Research Geographer** U.S. Geological Survey Chesapeake Bay Program Dr. Michael Evans **Deputy Director Conservation Innovation Center** Chesapeake Conservancy

Integrating deep-learning

models to forecast land use

Science. Restoration. Partnership.

Goal

- Make spatially and temporally accurate allocations of population and employment projections
- Objectives
- 1. Account for Variation in Types of Places
- 2. Accommodate Dynamic Growth Trajectories
- 3. Improve the Surface of Transition Probabilities

Deep Learning: Long Short-Term Memory

Capturing temporal information

Deep Learning: Convolution

Capturing spatial information

Convolutional Long Short-Term Memory

1. Model Dynamic Growth

T₋₂

2. Improve the Surface of Transition Probabilities

T₋₁

Transition Probability

 T_{+1}

Т

Self Organizing Map

Account for Variation in Types of Places

Socio-Economic Data

Block Types

- 1. 66 'Types' of Census Blocks
- 2. Differences in growth rates

Quantization Error = 0.000005 Topographic Error = 0.3 Combined Error = 0.002

LSTM Training

Static variables

- 1. Distance to water
- 2. Distance to sewer
- 3. Regional employment

Temporal variables (2000, 2010)

- 1. Distance to commercial hotspots
- 2. Distance to residential hotspots
- 3. Distance to urban clusters
- 4. Travel time
- 5. Landcover
- 6. Developed vs. Natural vs. Agricultural

Response Variable

Residential vs. Commercial vs. No Change in 2020

Predicted 2020 Commercial Development Probability

2020 Commercial Development

Predicted 2020 Residential Development Probability

2020 Residential Development

Chesapeake Bay Program Science. Restoration. Partnership.

Questions?

Peter Claggett

pclagget@chesapeakebay.net

Dr. Michael Evans mevans@chesapeakeconservancy.org

256 x 256 x C x T 256 x 256 x 1

Chesapeake Bay Land Change Model (CBLCM)

Application

- 1. Estimate extent of future development
- 2. Estimate future population and households on sewer and septic
- 3. Estimate future conversion of forest and farmland

May, 2018 Sentinel-2 image

Aug, 2018 Sentinel-2 image

Siamese U-Net Difference

2 km

LSTM Aug, 2018 prediction

Normalized Diff (LSTM Aug, real Aug)

Long Short-Term Memory

Capturing temporal information

April/May

June/July

Aug/Sep

Classification

Deep Learning (AI)

