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1. Outlines



2. Methods Applied in Chesapeake Bay



2. Methods

Neural 
network

Deep 
leaning

Supervise /
unsupervised 
Learning

Regression, Support Vector Machines (SVM), k-Nearest Neighbors (k-NN), Random 
Forest (RF), Gradient Boosting (XGBoost, LightGBM, CatBoost), etc.

k-Means Clustering, Hierarchical Clustering, PCA (Principal Component Analysis)



• Species Distribution Model (Horemans et al., 2024, Ecological modeling)

• Predict Species distribution based on environmental variables
• Using numerical models (biases)

• Using observation. (limited)

Train SDMs using environmental mechanistic model outputs to 
improve prediction skill (generalized linear models)

2. Applications: Ecosystem



2. Applications: Ecosystem

• Primary production (Scardi, 1996, Marine Ecology Progress Series)
• Use environmental data to estimate primary production use NN model

•   

Harding, et al. 1986

𝐿𝑠 𝑡 = ෪𝐿𝑠 𝑡, 𝑝 + 𝐸𝑟 𝑡 , NN



Peak storm surge (Lee, et al. 2024, Coastal Engineering) 

Using storm surge simulations for 1050 synthetic tropical cyclones (TCs) in 
the US North Atlantic region (ADCIRC model)

2. Applications: Storm surge

TC parameters (latitude LAT , 

longitude LON, heading direction ✓, 

central pressure Cp, radius of 

maximum winds Rmax, and 

translation speed Vf )

https://www.sciencedirect.com/journal/coastal-engineering


Lockwood et al., JGR, 2022

2. Applications: Storm surge

Use hourly wind generated by Holland (1980) wind model 

and train against ADCARC output for different track



2. Applications: Saltwater intrusion

• 7-day averaged Saltwater intrusion (Gorski, et al. 2024. L&O)

• Daily river discharge

• meteorological drivers

• tidal water level data

• Using past 365 days data

Observations for training

Good model performance
Better than 3D model



• Predict daily mean/maximum significant wave based on wind (Shen et al. 2024)

2. Applications: Wave

Daily Wind 
9 stations 

Trained by SCHISM 
model simulated 
wave

Advantage
• Only inputs wind data
• It can conveniently do forward 

and backward simulations of 
wave

• Easy to access climate change

1991-1995

Hurricane Sandy (October 2012) 
SCHISM NOAA data



2. Applications: DO 

• Column minimum DO (Rossa and Stock, ECSS 2019)

• Model tree (Cunist package for R)



• Prediction of DO (Xu et. 2020, Water Resource Research

2. Applications: DO 

• Drive by all external forcing: flow, N,P 
loadings, wind, air temperature, heat flux

• Use parameter transformation
• Be able to be used for management



2. Applications: DO 



• Predict phytoplankton (Xu and Shen, 2021. Ocean Modeling 

2. Applications: Phytoplankton 



• Can we use ML model for management?

• Predicate phytoplankton (Shen et al., 2019, Ecological modeling

2. Applications: Phytoplankton 

• Input parameters: watershed model 

outputs (flow, nutrients, temperature)

• Support vector machine LS-SVM 

(project to high dimension)

• Parameter transformation 

• Without use temperature as an 

independent variable

Management scenario:
Reduce nutriment by 50%



3. Future Applications: 
    Predication/Management
• Using ML to predict future

• Applying it for management

Ecosystem status

Hypoxia volume

Saltwater intrusion
Nutrient reduction7-day forward prediction of 

saltwater intrusion of the Bay 



3. Future Applications

• Using a data-driven deep learning model to improve wind forecasting accuracy, 
and improving wave forecasting (Yevnin & Tiked, 2022, PO)

• Can be used to link observations and numerical model)

Encode environmental; variables
Construction of hypoxia volume

Applications:



3. Future Applications:
    Physics-informed neural networks

• One of the challenge of application of ML in estuary is high variations

• Physics-Informed Neural Network-based surrogate model for hydrodynamic 

simulators governed by Shallow Water Equations.

    Donnelly et al. Science of the Total Environment, 2024



3. Future Application: Digital twin
• AI-GOMS model (Xiong et al., 2023, arXiv)



3. Future development: Digital twin

• (A) Overall system pipeline integrating 
Time Embedding and deep feature 
extraction

• (B) LLMbased Time Embedding module, 

• (C) Asynchronous Cross-Iterative 
Random Sampling Strategy, 

• (D)Ocean self-attention module based on 
cosine attention, and 

• (E) Adaptive loss function for thermocline 
forecasts. W-MSA means window-based 
multi-head self-attention module. 

Yang et al., 2024. arVix



Conclusions

• Machine learning (ML) methods have been utilized in the Bay 
for a variety of applications. 

• Given the large amounts of observational data and numerous 
numerical models available, ML has significant potential for 
improving forecasting and management efforts in the Bay.


	Slide 1: Literature Summary of Estuarine and Living Resources Studies Involving AI/ML  
	Slide 2: 1. Outlines
	Slide 3: 2. Methods Applied in Chesapeake Bay
	Slide 4: 2. Methods
	Slide 5: 2. Applications: Ecosystem
	Slide 6: 2. Applications: Ecosystem
	Slide 7
	Slide 8
	Slide 9: 2. Applications: Saltwater intrusion
	Slide 10: 2. Applications: Wave
	Slide 11: 2. Applications: DO 
	Slide 12
	Slide 13
	Slide 14: 2. Applications: Phytoplankton 
	Slide 15: 2. Applications: Phytoplankton 
	Slide 16: 3. Future Applications:      Predication/Management
	Slide 17: 3. Future Applications
	Slide 18: 3. Future Applications:     Physics-informed neural networks
	Slide 19: 3. Future Application: Digital twin
	Slide 20: 3. Future development: Digital twin
	Slide 21: Conclusions

