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CBNERR-VA/VIMS High-Frequency Water Quality
Monitoring in Virginia Tidal Waters

ﬁ 22 years of monitoring
@ 20 5,49 1 ) 940 water quality observations
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Dataflow Monitoring Platform York Mesohaline (YRKMH). October 23, 2024

Turbidity (NTU)

Surface observations
2-3 sec intervals
25 knots -> obs every 25m
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* Primary datasets used for water clarity standards
assessment associated with SAV designated use

NATIONAL ESTUARINE
RESEARCH RESERVE & MARY
VIRGINIA VIRGINIA INSTITUTE OF MARINE SCIENCE




8 bands -> Surface Reflectance ., .. vamneiemont 2023
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Acquire imagery from Planet

e ~ 3 m resolution, 8 band

* Near daily coverage in
Chesapeake Bay since 2022 | _ — —

Atmospheric correction (ACOLITE) Havelenath (um)

-> 8 su rfa ce ref |eCt ance ba nds Fig. 3. SuperDove eight band relative spectral response function as provided by Planet.

Match surface reflectance to | i | e

CBNERR-VA Dataflow turbidity — i

measurements (1000’s per day)

Use random forest regression to

estimate turbidity from 8 bands of

surface reflectance
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Dataflow and Satellites

Mobjack 06-20-2024
Mobjack 05-21-2024
York 06-21-2024

York 05-22-2024

Upper York 03-09-2023

VITA, Esri, HERE, Garmin, USGS, EPA, NPS, Esri, HERE, NPS
Mewport Mews

Turbidity

(Log10 NTU)
® 094-1.05

1.05 - 1.16
1.16 - 1.28
1.28 - 1.39

® 1.39-1.50
8 Turbidity Index
¥ 0.091




Random forest regression with 61 WeE oot
block cross-validation to 4 e
estimate Turbidity in York River

Estuary

Handles non-linear relationships and
complex interactions b/w variables
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* No assumptions related to data

distributions
! : 0.6 0.8 1.0 L 1.4 1.6
Observed log10(Turbidity in NTU)

* Block cross-validation helps address Dataflow: 03/29/2023, 05/21/2024, 05/22/2024, 06/20/2024,
spatial autocorrelation — ensure train 06/21/2024

& test split are spatially independent



Dataflow, Satellites, and Water Clarity next steps

Rather than Turbidity ~ Surface Reflectance:
1. Kd ~ Turbidity + Chlorophyll + Salinity (CDOM)
2. Kd ~ Surface Reflectance

(A) In-Situ Verification Samples (B) Satellite and Dataflow PMKOH..-2
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Kd = func ( 8 SuperDove bands )

R2=0.87
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3.0 ). . 1.0 3.0
Observed in-situ Kd Kd = func ( Turb, Chlor, Salin)




Summary

* Early data exploration shows promise for anchoring satellite imagery with
dataflow monitoring platforms to estimate light conditions

e Potential for incorporating available satellite data into water clarity
assessments

Challenges

* Water clarity standards assessment built on estimates of water clarity
attenuation coefficient (Kd)
e Requires hierarchical modeling approach based on Kd ~ turbidity +
chlorophyll + CDOM/Salinity
* |dentify error associated with turbidity/Kd estimates
e Spatial and Temporal autocorrelation
* Block cross-validation may be an approach
* High-Resolution Planet imagery is relatively new (since 2022)
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