A first look at microplastics in juvenile Striped Bass

Ryan J. Woodland¹ and Bob Murphy²

¹Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science, Solomons, MD 20657

²Tetra Tech, Inc, Owings Mills, MD 21117

Potential risks from microplastics ingestion and/or nanoplastics assimilation

- Microplastics (MPs) are everywhere
- MP disruption pathways in fish
 - Physical (e.g., blockage, satiation, energetic)
 - Biochemical (e.g., hormonal, metabolic, oxidative stress, immunological, neurotoxicological, genotoxicological)
 - Potential vector for metals and organic contaminants
- Common effects
 - Reduced consumption (growth, survival, condition)

MPs prevalent in Chesapeake Bay ecosystem

Multiple tributaries

Anacostia River

MPs prevalent in Chesapeake Bay fishes

Potomac/Anacostia River

MPs in all functional groups of fish examined

- Stomachs only
- Killifish, Sunfish, Large/Smallmouth Bass, Blue Catfish, Northern Snakehead
- 0-9 MPs per individual
- Fibers (dominant), particles and macroplastics
- Inversely correlated with HSI and stomach fullness

Functional groups of fish Benthic omnivore Piscivore/ Invertivore Invertivore Planktivore/ Zoobenthivore

Sampling via electroshocking

A pilot dataset of YOY juvenile Striped Bass from the Lower Potomac River

Image credit: https://www.cbf.org

MPs found in YOY Striped Bass in Potomac

- Approx. 25% of YOY striped bass had MPs (N = 25)
- MP counts of 0-2 per fish
- GLM → inverse relationship with HSI but not SCI or LWI

Striped Bass Ecological Risk Assessment

Literature study of prey for Chesapeake Bay Striped Bass

- Trophic uptake > ambient uptake of MPs (lab studies)
- Environmental sources and transfer pathways to YOY Striped Bass

Semi-quantitative predator-prey interactions

Semi-quantitative predator-prey interactions

	Age-0				Age-1	Age-2	Diet of resid	
	Larval		Juvenile	9	SA	SA	Striped Bas.	
Prey category	OLIGO	TF	OLIGO	MESO	MAIN	MAIN	Priority-level	
Insects		47.5	40	12.5				
Cladocerans	26.2							
Larval zooplankton	1							
Adult copepods	40.3							
Bivalves					0.9	1.2		
Mysids		0	24.5	27	4.5	21		
Amphipods		1.5	15	15.5	1.9	5		
Other crustaceans					2.8	4		
Polychaetes		12	5.5	25	4.4	9.4		
Bay Anchovy					57.8	15.6		
Fish larvae		35.5	10	14				
Atl. Menhaden					1.9	17.9		
Other fish					7.6	8		

Diet of resident life-stages of Striped Bass in Chesapeake Bay

		Α	ge-0		Age-1	Age-2 SA	Focus on YO
	Larval		Juvenil	9	SA		specifically
Prey category	ey category OLIGO TF OLIGO		MESO	MAIN	MAIN	Priority-level	
Insects		47.5	40	12.5			
Cladocerans	26.2						
Larval zooplankton	1						
Adult copepods	40.3						
Bivalves					0.9	1.2	
Mysids		0	24.5	27	4.5	21	
Amphipods		1.5	15	15.5	1.9	5	
Other crustaceans					2.8	4	
Polychaetes		12	5.5	25	4.4	9.4	
Bay Anchovy					57.8	15.6	
Fish larvae		35.5	10	14			
Atl. Menhaden					1.9	17.9	
Other fish					7.6	8	

Focus on YOY juvenile life-stage specifically (Potomac R. data)

Historical priority prey		Age-0				Age-1	Age-2	Reported MP loads fr		
		Larval	Juvenile		SA	SA	literature (global)			
	Prev category	OLIGO	TF	OLIGO	MESO	MAIN	MAIN	Priority-level		
	Insects		47.5	40	12.5				(1-3)	
	Cladocerans	26.2								
	Larval zooplankton	1								
	Adult copepods	40.3								
	Bivalves					0.9	1.2			
	Mysids		0	24.5	27	4.5	21		(1-38)	
	Amphipods		1.5	15	15.5	1.9	5		(1-73)	
	Other crustaceans					2.8	4			
	Polychaetes		12	5.5	25	4.4	9.4		(1-4 [179])	
	Bav Anchovv					57.8	15.6			
	Fish larvae		35.5	10	14					
•	Atl. Menhaden					1.9	17.9			
	Other fish					7.6	8			

Historical priority prey

Recent (genetic) diet data show very similar patterns

Pagenkopp Lohan et al. 2023

Current MP research: Mysids as a vector for trophic transfer to YOY striped bass

Late spring sampling of Potomac and Patuxent River (3-5 m site depth)

3-min tow, area sampled ~56 sq-m per tow

Current MP research: Mysids as a vector for trophic transfer to YOY striped bass

Sorting, identifying and counting mysids from each site

Current MP research: Mysids as a vector for trophic transfer to YOY striped bass

Mysids sorted by genus (if feasible), digested, filtered, & MPs counted

Current MP research: Mysids as a vector for trophic transfer to YOY striped bass

Potomac only - evidence of downstream decline in MP loads in mysids (dilution?)

Next steps in MP research: Mysids as a vector for trophic transfer to YOY striped bass

- Continue analysis of MPs found in mysids
- Conduct initial laboratory study
 - Mysid shrimp uptake
 - Trophic transfer to YOY Striped Bass
 - Measure multiple responses (e.g., physiological, behavioral)
- Future work (?)
 - Robust field sampling of Striped Bass stomach contents
 - Tissue concentrations of MPs
 - Additional prey types
 - Spatial patterns in MP distribution

References

- Beaven, M. and Mihursky, J., 1980. Food and feeding habits of larval striped bass: an analysis of larval striped bass stomachs from 1976 Potomac Estuary collections. Potomac River fisheries program. Final report. *Morone saxatilis* (No. PB-80-144546). Maryland Univ., Solomons (USA). Chesapeake Biological Lab.
- Bhuyan, M.S., 2022. Effects of microplastics on fish and in human health. Frontiers in Environmental Science, 10, p.827289.
- Boynton, W.R., Zion, H.H. and Polgar, T.T., 1981. Importance of juvenile striped bass food habits in the Potomac estuary. *Transactions of the American Fisheries Society*, 110(1), pp.56-63.
- Foley, C.J., Feiner, Z.S., Malinich, T.D. and Höök, T.O., 2018. A meta-analysis of the effects of exposure to microplastics on fish and aquatic invertebrates. *Science of the total environment*, 631, pp.550-559.
- Jovanović, B., 2017. Ingestion of microplastics by fish and its potential consequences from a physical perspective. *Integrated environmental assessment and management*, 13(3), pp.510-515.
- Murphy, R. 2020. Microplastic abundance in submerged aquatic vegetation beds in the Anacostia River, Washington, DC Tetra Tech, Owings Mills, MD.
- Murphy, R., Flippin, J., and Woodland, R.J. 2021. Preliminary conceptual model for an ecological risk assessment for microplastics on striped bass in the Potomac River Estuary. Tetra Tech, Inc., Owings Mills, MD.
- Murphy, R. and Woodland, R.J. 2022. Microplastics in Fish from the Anacostia and Potomac Rivers, Final report to MWCOG, 20-004, Tetra Tech, Inc., Owings Mills, MD.
- Yonkos, L. T., E. A. Friedel, A. C. Perez-Reyes, S. Ghosal, and C. D. Arthur. 2014a. Microplastics in Four Estuarine Rivers in the Chesapeake Bay, U.S.A. Environmental Science & Technology 48:14195-14202.