

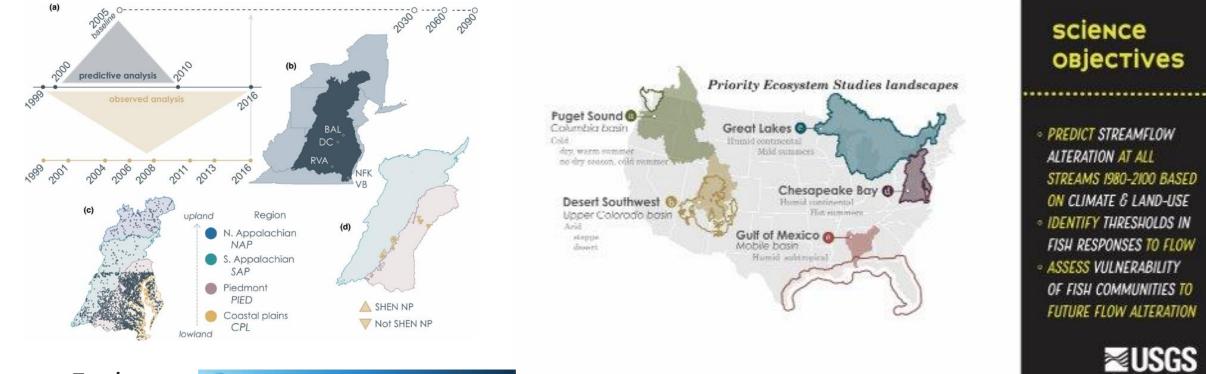
Machine learning models applied to forecast ecology & flow under global change

Chesapeake Bay STAC: Leveraging Artificial Intelligence and Machine Learning to Advance Chesapeake Bay Research and Management: A review of status, challenges, and opportunities 24-25 February 2025

Taylor Woods, USGS tewoods@usgs.gov

This information is preliminary and is subject to revision. It is being provided to meet the need for timely best science. The information is provided on the condition that neither the U.S. Geological Survey nor the U.S. Government shall be held liable for any damages resulting from the authorized or unauthorized use of the information.

Overview: 2 forecasting projects



Ecology

Global Change Biology

RESEARCH ARTICLE 🕆 Open Access 🛛 🛞 🛈

Observed and projected functional reorganization of riverine fish assemblages from global change

Taylor Woods 🔀 Mary C. Freeman, Kevin P. Krause, Kelly O. Maloney

First published: 06 April 2023 | https://doi.org/10.1111/gcb.16707 | Citations: 1

Flow (ongoing)

USGS

science for a changing world

Questions/objectives

Ecology

How will fish communities change in the future under different scenarios of climate & land-use change?

Which suites of traits are associated with 'winners' (habitat suitability gains) & 'losers' (habitat suitability losses)

Flow

How will climate & land-use change affect flow regimes?

Connection to Chesapeake goals/outcomes

Vital Habitats	Stream Health	Modeling, Monitoring, Research, Climate	Determine the effects of climate change on stream processes.
Vital Habitats	Stream Health	Analysis Additional text Additional text Additional text Additional text Additional text, Monitoring, Climate	Increase and improve the existing temperature monitoring network and standardize a methodology across the region, similar to the BIBI data, to assess important ecological thresholds and temperature criteria to protect fisheries.
Climate Resiliency	Climate Resiliency Monitoring and Assessment	Data Gathering, Monitoring, Climate, Indicator	Development of a flooding climate change indicators that links fine scale flooding data to community resilience.
Healthy Watersheds	Healthy Watersheds	Data Gathering, Synthesis, Climate	Use an integrative approach combining information on flows, groundwater, stream power, connectivity, and adaptive capacity to provide a more comprehensive approach for identifying climate refugia.
Climate Resiliency	Climate Resiliency Monitoring and Assessment	Analysis Additional text Additional text Additional text Additional text Additional text	Conduct climate vulnerability assessments to better understand both the exposure and sensitivity of species/habitats to rising temperatures, including indirect effects (e.g. invasive species), to better understand overall vulnerability.

Rationale for method selection

Random forests

General:

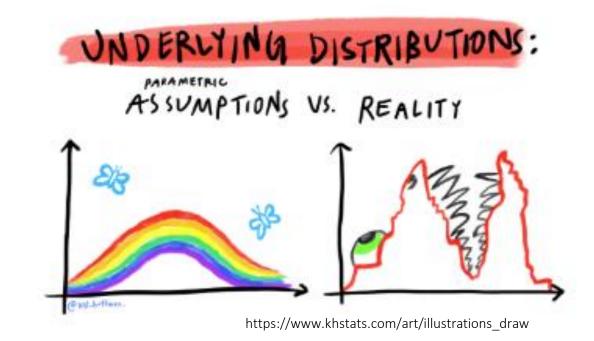
Non-linear, complex relationships

Ecology (spatial):

Predictive power for forecasting (classification)

Flow (temporal):

RF models with temporally lagged predictors performed similarly to or better than neural networks (LSTMs)



Ecology: model methods

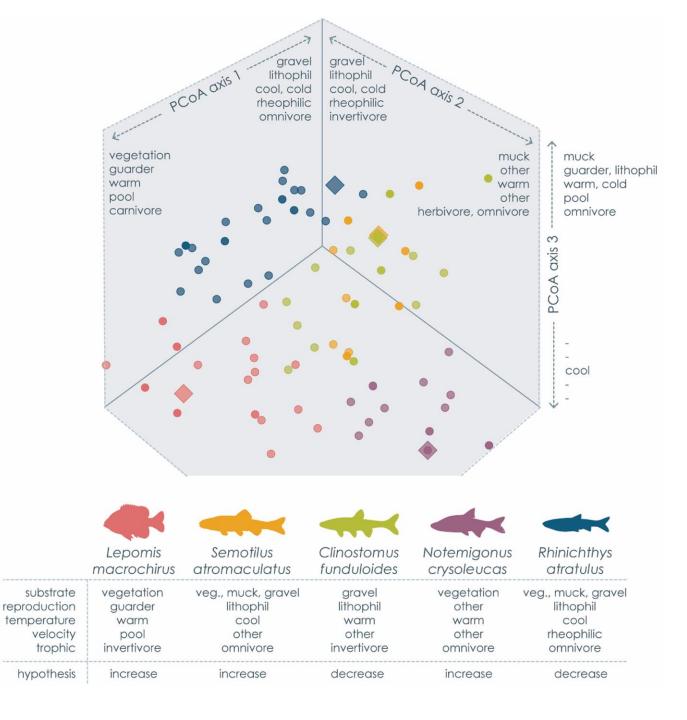
Reponses

Habitat suitability (inferred by abundances as low, med, high) for different functional groups

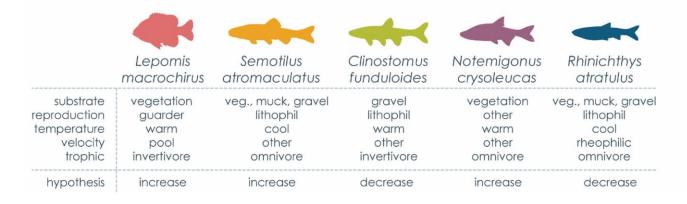
Predictors

Natural landscape

Climate & land-use



Modeling framework



Abundance data Low, medium, high ~ predictors

"habitat suitability"

{multiple future scenarios}

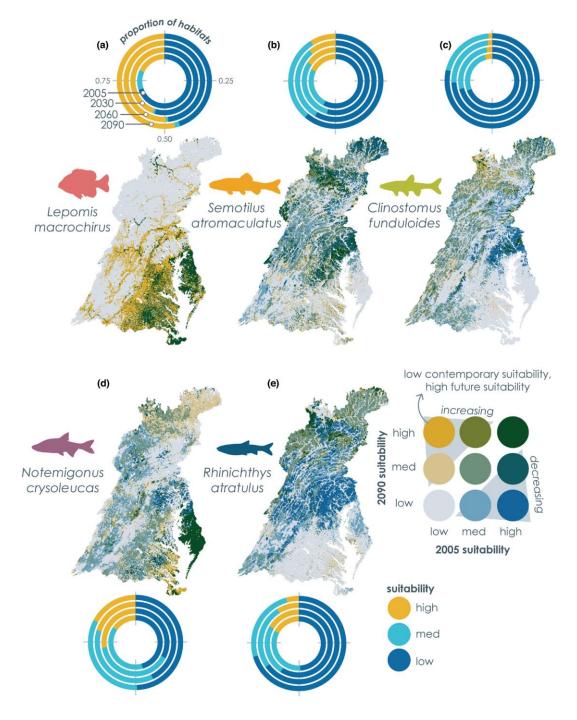
Ecology: model results

'Winner' traits

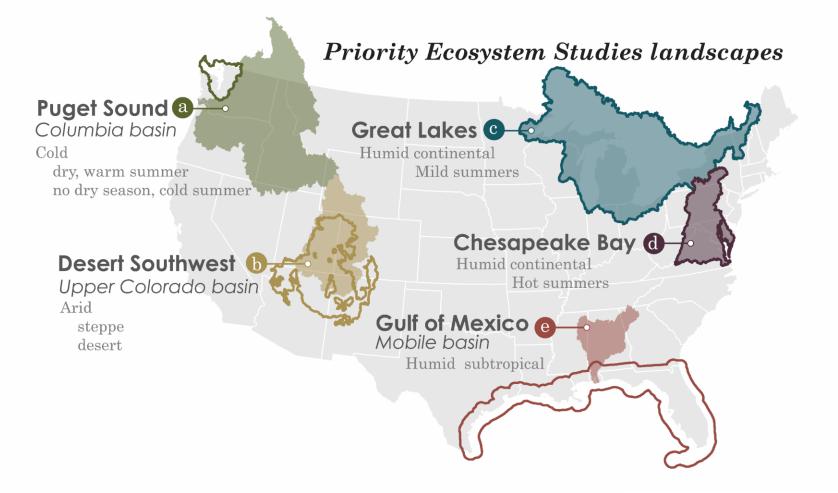
Generalist, warm-water, fine substrate, slow-water

'Loser' traits

Cold-water, clean substrate, fast-water



Flow: model context



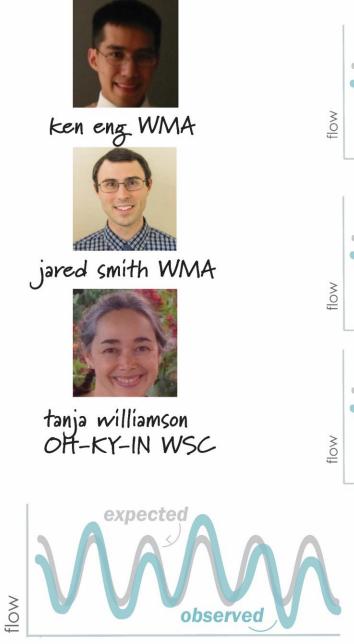
SCIENCE OBJECTIVES

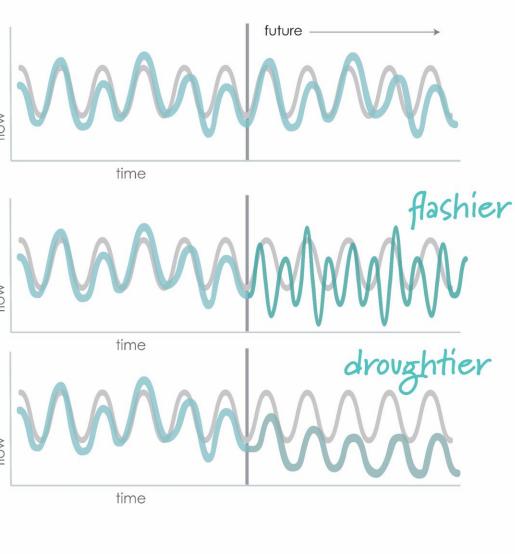
 PREDICT STREAMFLOW ALTERATION AT ALL STREAMS 1980-2100 BASED ON CLIMATE & LAND-USE
 IDENTIFY THRESHOLDS IN FISH RESPONSES TO FLOW
 ASSESS VULNERABILITY OF FISH COMMUNITIES TO FUTURE FLOW ALTERATION

Preliminary Information-Subject to Revision. Not for Citation or Distribution

hydroLogy team

- IDENTIFY PREDICTOR
 VARIABLES FOR FLOW
 MODELS
- PREDICT FLOW METRICS AT GAGED & UNGAGED REACHES 1980-NOW
- FORECAST FLOW
 METRICS NOW-2100

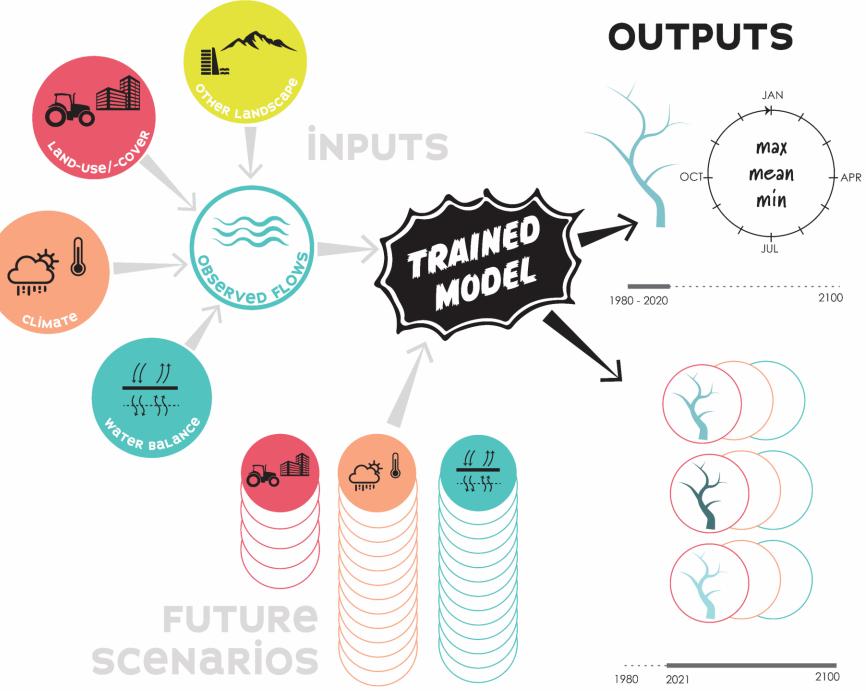




FLOW MODELS

MACHINE LEARNING
 MODELS TO PREDICT
 MONTHLY FLOWS 1980-2020
 AT ALL NHDV2 REACHES
 OUTPUTS ARE MONTHLY
 MINIMUM, MEAN, MAXIMUM
 FLOW

FORECAST MONTHLY FLOWS
 WITH FUTURE SCENARIOS
 2021-2100



Preliminary Information-Subject to Revision. Not for Citation or Distribution

Flow: model results

REGION	HM_TYPE	NSE	PHASE
VPU02	MIN	0.899	0.948
VPU02	MEAN	0.943	0.973
VPU02	MAX	0.881	0.94
VPU03W	MIN	0.861	0.929
VPU03W	MEAN	0.926	0.966
VPU03W	MAX	0.851	0.926
VPU04	MIN	0.843	0.92
VPU04	MEAN	0.872	0.936
VPU04	MAX	0.741	0.876
VPU14	MIN	0.833	0.915
VPU14	MEAN	0.868	0.934
VPU14	MAX	0.857	0.927
VPU17	MIN	0.881	0.942
VPU17	MEAN	0.914	0.959
VPU17	MAX	0.864	0.932

Preliminary Information-Subject to Revision. Not for Citation or Distribution

Challenges/gaps

Data limitation: small sample sizes for biology can be limiting for ML models

Uncertainty: how to handle uncertainty when using ML/AI outputs as ecological model inputs

