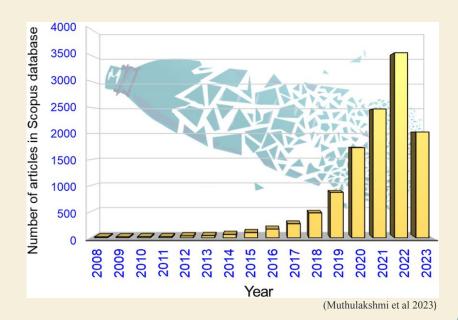

Assessing the Presence of Microplastics in Jug Bay


Ruth Olawumi – University of Wisconsin-Madison

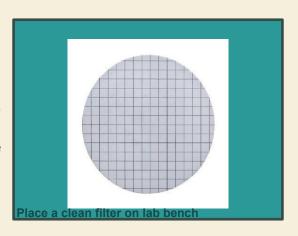
Dr. Patricia Delgado – Jug Bay Wetlands Sanctuary
In collaboration with The AnthroHydro Lab at The Catholic University of America

The Problem of Microplastics

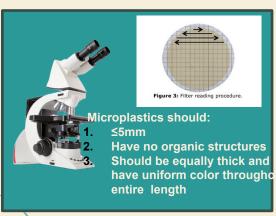
Objective

- Analyze water samples various sites in Jug Bay before (baseflow) and after rain events
- Determine concentration of microplastics in each sample
- Gain a better understanding of microplastic concentrations in the area

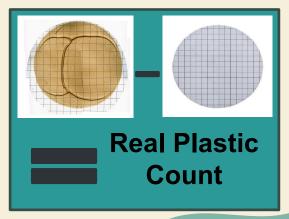
Methods


Step 1:

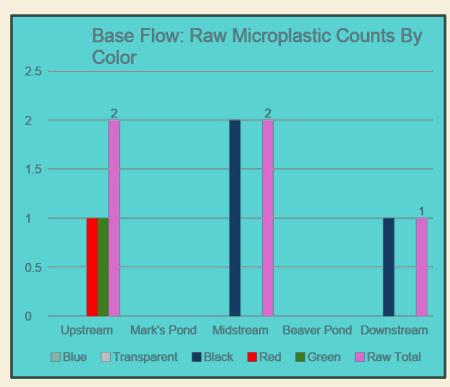
Vacuum
filtration of
500mL of
sample through
Whatman
gridded filters

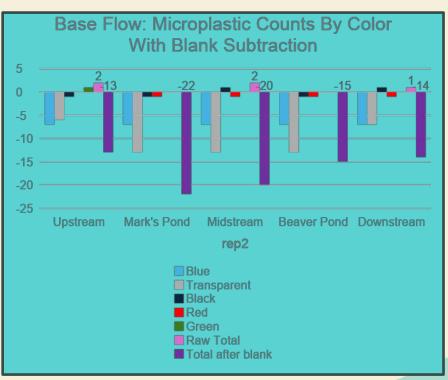

Step 2:

Set out a
"blank" filter to
capture
particles in the
air during
analysis


Step 3:

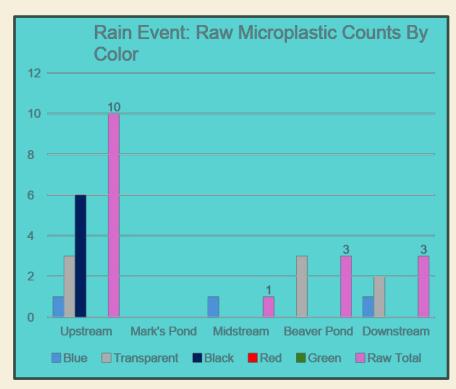
Visually identify and count microplastics with optical microscope




Step 4:

Subtract particles on the blank from each filter by color

Initial Results



Average # of microplastics per filter: -16.8

Average # of microplastics per filter: 1

Initial Results

Rain Event: Microplastic Counts By Color With Blank Subtraction Beaver Pond Downstream **Steam Locations** Blue Transparent Raw Total Total after blank

Average # of microplastics per filter: 3.4

Average # of microplastics per filter: -5

Limitations With Initial Method

Documentation

Limits the possibility of comparing results or replicating the study

Observer Bias

Individual biases and expectations can lead to inconsistent data

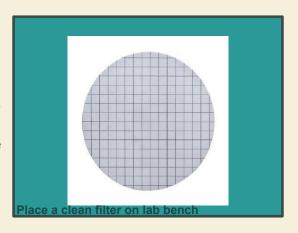
No Chemical Identification

Prevents interpretation of the microplastics sources

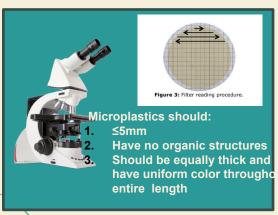
Excessive Organic Matter

Layer of soil over filter potentially hid microplastics and affected the counts

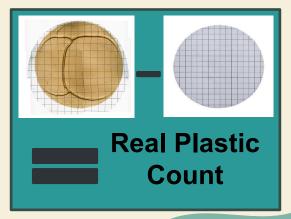
Initial Methods


Step 1:

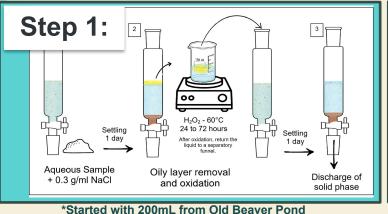
Vacuum
filtration of
500mL of
sample through
Whatman
gridded filters

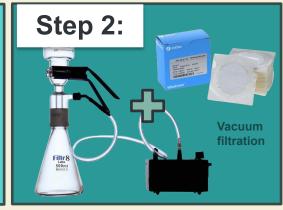

Step 2:

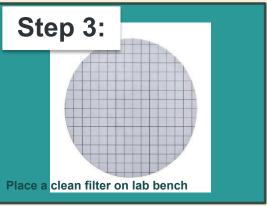
Set out a
"blank" filter to
capture
particles in the
air during
analysis


Step 3:

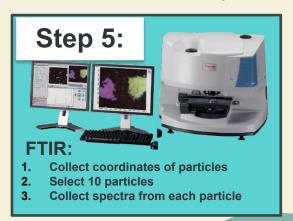
Visually identify and count microplastics with optical microscope




Step 4:

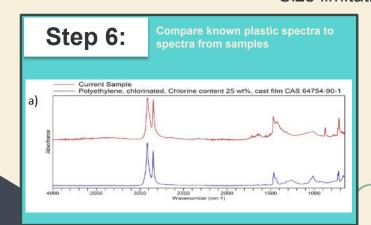

Subtract particles on the blank from each filter by color

Revised Methods



*Counted ~300 particles between 50-4000um

μFourier Transform Infrared Spectroscopy for Microplastic Analysis



Advantages

- Chemical identification of particles
 - Non-destructive
 - Reduces bias

Limitations

- Constraints on sample uniformity (filters must be flat)
 - Samples must be pre-processed
 - Size limitations

How I Used The µFTIR

article #	Location (Row and Column.order found in square)	Revised Locations (Universal columns)	Color	Size(µm)	II) # (filter #, row,column)	Туре	Notes
							Long tangled fibers. Ends
276	7,6.7		Gray/Transparent	9808.201	F01R7C6.7	Fiber	in R10C7
							Starts in R713. Ends in
476	8,13.2		Green	4208.947	FD1R8C13.2	Fiber	R913
98	5,2.2	5,3.2	Yellow/Transparent	3029.218	F01R5C2.2	Fiber	
839	13,4.6	13,7.6	Gray	2888.949	FD1R13C4.6	Fiber	stretches into R13C5
							Long and tabgled. Extends
633	10,9.6	10,10.6	Gray	2770.953	F01R10C9.6	Fiber	into R11C9
724	11,10.4	11,11.4	Gray	2624.54	F01R11C10.4	Fiber	
730	11,11.3	11,12.3	Blue+Gray	2535.103	F01R11C11.3	Fiber	Blue with gray ends
566	9,14.1		Gray	2389.824	F01R9C14.1	Fiber	
368	8,3.1		Gray/Transparent	2366.765	F01R8C3.1	Fiber	
89	4,11.11	4,12.11	Transparent	2057.345	FD1R4C11.11	Fiber	tangled fiber
144	5,12.2	5,13.2	Gray/Transparent	2013.601	FD1R5C12.2	Fiber	
600	10,4.7	10,5.7	Gray/Transparent	1971.488	F01R10C4.7	Fiber	
164	6,2.2		Gray/Transparent	1969.606	F01R6C2.2	Fiber	
666	11,3.1	11,4.1	Brown/Green	1818.72	F01R11C3.1	Fiber	
218	6,11.4		Gray/Transparent	1756.164	FD1R6C11.4	Fiber	frayed
824	13,2.9	13,5.9	Gray	1690.006	FD1R13C2.9	Fiber	
624	10,8.5	10,9.5	Gray/Transparent	1646.497	F01R10C8.5	Fiber	
258	7,5.1		Gray/Transparent	1539.806	F01R7C5.1	Fiber	
614	10,7.3	10,8.3	Gray	1518.384	F01R10C7.3	Fiber	
333	7,12.3		Gray	1517.193	F01R7C12.3	Fiber	
540	9,9.5		Blue/Gray	1509.534	F01R9C9.5	Fiber	
787	12,7.5	12,9.5	Gray/Transparent	1508.675	F01R12C7.5	Fiber	
733	11,11.6	11,12.6	Gray/Transparent	1453.925	F01R11C11.6	Fiber	
737	11,12.3	11,13.3	Gray/Transparent	1424.585	F01R11C12.3	Fiber	tangled
660	11,2.5	11,3.5	Gray/Transparent	1417.153	FD1R11C2.5	Fiber	
756	12,4.1	12,6.1	Black	1350.575	FD1R12C4.1	Fragment	
262	7,5.5		Blue	1341.617	FD1R7C5.5	Fiber	
522	9,7.1		Gray	1317.286	FD1R9C7.1	Fiber	
254	7,4.7		Transparent	1305.183	FD1R7C4.7	Fiber	

How I Used The µFTIR

Locate particle

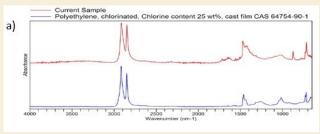
Select a particle

Particle #	Revised Locations (Universal columns)	Color	Size(µm)	ID # (filter #, row,column)	Туре	Notes
276		Gray/Transparent	9808.201	F01R7C6.7	Fiber	Long tangled fibers. Ends in R10C7
476		Green	4208.947	F01R8C13.2	Fiber	Starts in R713. Ends in R913
98	5,3.2	Yellow/Transparent	3029.218	F01R5C2.2	Fiber	
839	13,7.6	Gray	2888.949	F01R13C4.6	Fiber	stretches into R13C5

Position µFTIR over particle

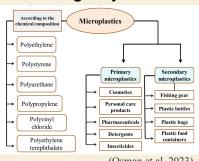
Document particle's coordinates

Particle #	Color	Size(µm)	ID # (filter #, row,column)	Туре	Notes	Coordinates
276	Gray/Transparent	9808.201	F01R7C6.7	Fiber	Long tangled fibers. Ends in R10C7	(870, -7930)
476	Green	4208.947	F01R8C13.2	Fiber	Starts in R713. Ends in R913	(1750, 12350)
98	Yellow/Transparent	3029.218	F01R5C2.2	Fiber		(-550, -17400)
839	Gray	2888.949	F01R13C4.6	Fiber	stretches into R13C5	(17615, -3650)


Future Work

How I Would Have Used The μFTIR given more time

- Collected spectra for all 900 particles on sample filter and the 300 from the blank



 Compared results to known plastic spectra to chemically identify everything

(Samsu et al. 2024)

 Determined sources of microplastic pollution in Jug Bay

(Osman et al. 2023)

Key Takeaways

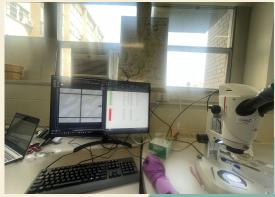
- **Proper documentation** is key to making sure a study is reproducible

 Use of an FTIR can provide more accurate results compared to purely visual identification for microplastics

- Sample pre-processing is necessary to get rid of organic material

Systems thinking/problem solving abilities were developed

THANK YOU!



Does anyone have any questions?