Summer 2025 Research Project

Vivian Maneval Ecological Restoration Science Intern

→ Underwood & Associates
08/08/25 ·

What are Living Shorelines?

- MD has over 3,000 miles of shorelinethe Bay is a unique resource!
- As climate change worsens, we must protect our shorelines.
- Living shorelines are a natural, adaptive method- and have been found to outperform hardened structures.

Idea & Reasoning

Question:

How does the vegetation community structure and productivity of restored living shorelines compare to unrestored fringing marshes across three paired sites in the Severn River?

- Is there a significant difference between restored and unrestored sites?
- Community structure and productivity will be measured through... →

Definition:

A fringing marsh is a wetland that lies on the edge of a large body of water, comprising intertidal habitat between upland and open water.

Native vs. Non-native Abundance

Hypothesis + Goals

Hypothesis

Restored living shorelines have significantly higher community structure metrics and vegetative productivity than adjacent unrestored fringing marshes across three paired sites in the Severn River.

Project Goals

- Examine whether the restorations are achieving lower, comparable, or higher vegetation metrics compared to unrestored sites with similar characteristics.
- Assess whether living shoreline sites are adequately performing, which could inform future restoration design and monitoring protocols.

Literature Review

Living shorelines achieve functional equivalence to natural fringe marshes across multiple ecological metrics

Isdell et al. (2021)

This study found equivalent functionality between 13 paired sites (restored paired with natural) in coastal Virginia, studying numerous metrics. **Vegetation was not evaluated in depth**, only through stem counts.

Evaluating Restored Tidal Freshwater Wetlands

Baldwin et al. (2019)

The criteria for evaluating restoration projects in tidal freshwater wetlands are hydrology, geomorphology, soil, salinity, microbes, **vegetation**, seed banks, benthics, fauna, and ecosystem functions.

Site Selection

Pair 3

Restored:

Kyle Point (Completed 2020)

Unrestored:

Sullivan's Cove Natural Area

Pair 2

Restored:

Pines on the Severn (Completed 2010)

Unrestored: 1455 Point Way

Pair 1

Restored:

St. Luke's (Completed 2018)

Unrestored:

Nautilus Point Marina

Site Selection (1)

Pair 1

Restoration 1

St. Luke's

Fetch: 0.16km (0.1 mi) Bank Height: 0-1.5m Site Length: 15m

Unrestored Site 1
Nautilus Point Marina

Fetch: 0.12km (0.07 mi) Bank Height: 0-1.5m Site Length: 18m

Site Selection (2)

Restoration 2

Pines on the Severn

Fetch: 1.38km (0.86 mi) Bank Height: 1.5-9m Site Length: 65m

Unrestored Site 2

1455 Point Way

Fetch: 1.43km (0.89 mi) Bank Height: 1.5-9m Site Length: 42m

Site Selection (3)

Pair 3

Considerations

Restoration 3

Kyle Point

Fetch: 2.41km (1.5 mi) Bank Height: 1.5-9m Site Length: 230m

Unrestored Site 3

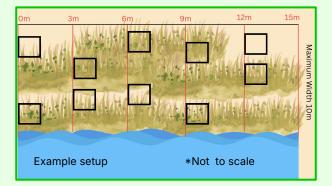
Sullivan's Cove

Fetch: 1.89km (1.18 mi) Bank Height: 0-1.5m Site Length: 65m Finding characteristically similar sites was hindered by...

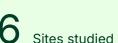
- Low resolution satellite imagery of shorelines.
- An abundance of armored shorelines in the Severn.

Methodology

Setup


- Site divisions
- Quadrat placement randomization

Data Collected


- DO mg/L, DO%, salinity, temperature
- Tide stage
- Within quadrats:
 - Dominant substrate
 - Wrack presence
 - Marsh zone
 - Plant height variation
 - **Species observations +** cover class for each species

Field Considerations

- Unknown species
- Difficult-to-traverse sites

Protocol Specifics

Of each site length was measured

Random 1m x 1m quadrats per transect

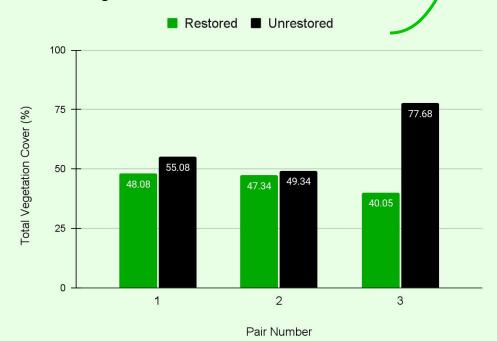
3_m

Separation between transects

10m

Maximum width measured

Results



Total Vegetation Cover

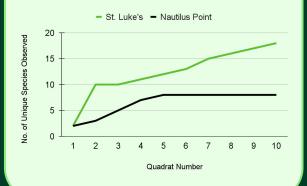
Percent Vegetative Cover at Site

→ Underwood & Associates

What does this mean?

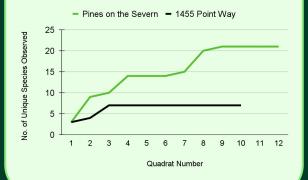
Unrestored sites had higher % cover within all three pairs.

This may be a result of multiple causes:

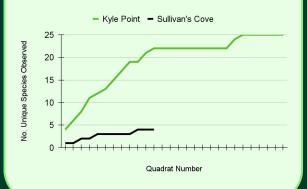

- Living shorelines often contain bare areas for habitat provisioning, recreational use, and as a result of the headland + embayment system.
- Invasive species are generally denser, leading to higher % cover at unrestored sites (e.g., Phragmites australis stands).
- Higher vegetation cover ≠ healthier

Species Richness

At each restoration, there were 2-6 times as many species observed as at their paired unrestored sites!


Pair 1

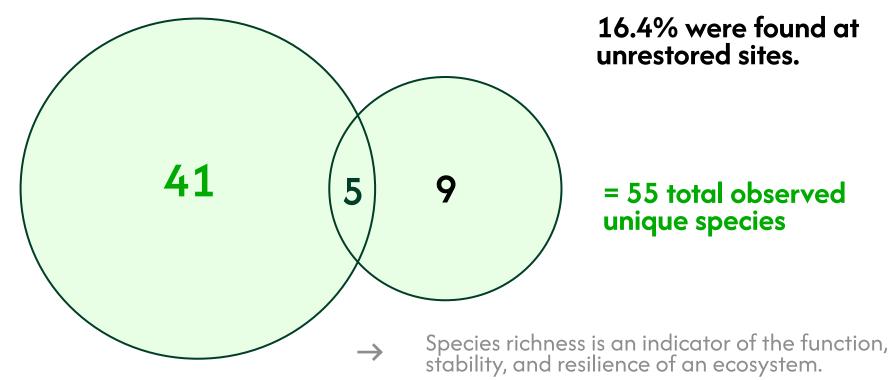
Restored: 18 Unrestored: 8


Pair 2

Restored: 21 Unrestored: 7

Pair 3

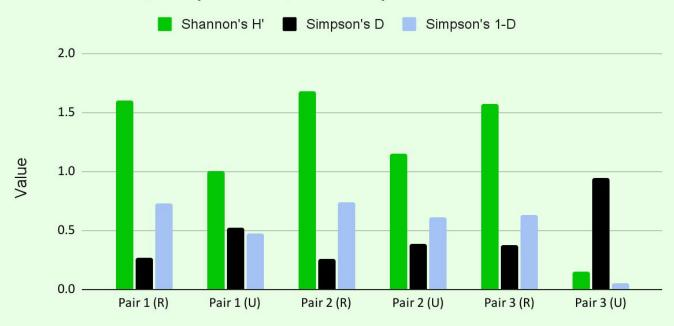
Restored: 25 Unrestored: 4



Species richness: The number of different species found in a specific area.

Species Richness

Of total species observed throughout the study period, 74.5% were found at U&A Dynamic Living Shorelines.


→ Underwood & Associates 08/08/25 ←

Diversity Indices

$$H' = -\sum p_i \ln(p_i)$$
 $D = \sum p_i^2$

$$D = \sum p_i^2$$

Shannon's H', Simpson's D, and Simpson's 1-D

Shannon's Diversity Index (H')

- Higher H', more diversity (incl. richness & evenness)
- 0-1: Low diversity, 1-2: Moderate diversity

Simpson's Diversity Index (D)

- Measures species dominance
- Lower value= more diverse

Simpson's Diversity Index (1-D)

- Higher value= more diverse
- 0-0.3: Low diversity, 0.03-0.07: Moderate diversity, 0.7-1: High diversity

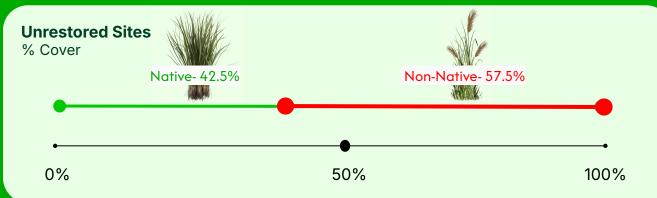
Site

→ Underwood & Associates 08/08/25 ←

Species Composition

Yellow: Found at both Restored and Unrestored sites

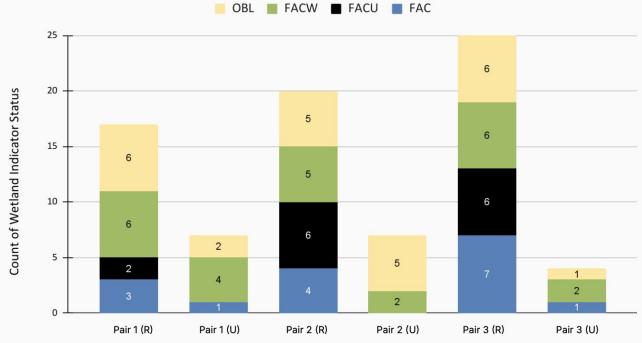
Restored


Unrestored

Pair 1	American Sweetgum, American Three-Square Bulrush, Black Locust, Clustered Dock, Common Reed, False Daisy, Green Arrow Arum, Halberdleaf Tearthumb, Marsh Elder, Marsh Fleabane, Saltmarsh Rosemallow, Seaside Goldenrod, Siberian Elm, Smooth Cordgrass, Soft-Stemmed Bulrush, Tussock Sedge, Virginia Creeper	Common Reed, Hedge Bindweed, Japanese Dodder, Marsh Elder, River Bulrush, Riverbank Grape, Saltmarsh Bulrush, Seaside Goldenrod
Pair 2	American Groundnut, American Three-Square Bulrush, Bermuda Grass, Common Ragweed, Creeping Saltbush, Dog Fennel, Eastern Gamagrass, Japanese Mugwort, Pennsylvania Smartweed, Perennial Saltmarsh Aster, Porcelain-Berry, Quack Grass, Saltmarsh Hay, Saltmarsh Rosemallow, Sea Myrtle, Seaside Goldenrod, Smooth Cordgrass, Swamp Rosemallow, Sweet Autumn Clematis, Switchgrass, Virginia Wild Rye	Common Reed, Eastern Grasswort, Marsh Elder, Seacoast Bulrush, Seaside Brookweed, Smooth Cordgrass, Tidal Marsh Amaranth
Pair 3	Bermuda Grass, Bitter Panicgrass, Chinese Bushclover, Clustered Dock, Common Ragweed, Common Rush, Dotted Smartweed, Giant Bristlegrass, Hedge Bindweed, Japanese Mugwort, Japanese Stiltgrass, Marsh Elder, Marsh Fleabane, Peppervine, Prairie Cordgrass, Saltmarsh Hay, Saltmarsh Rosemallow, Seaside Goldenrod, Smooth Cordgrass, Straw-colored Flatsedge, Swamp Rosemallow, Switchgrass, Tulip Poplar, White Sweet Clover	Common Reed, Hedge Bindweed, Marsh Elder, Water Purslane

Underwood & Associates 08/08/25

Native & Non-Native Abundance



- By richness (raw number of species), unrestored sites were found to have less invasive species than restored.
- By overall species cover, restored sites have a higher percentage of native cover than unrestored sites.
- Likewise, unrestored sites have higher incidence of invasive species.

→ Underwood & Associates

Wetland Indicator Status

Wetland Indicator Statuses Throughout Sites

Obligate:

Almost always occurs in wetlands under natural conditions (estimated probability > 99%).

Facultative Wetland:

Usually occurs in wetlands, but occasionally found in non-wetlands.

Facultative:

Equally likely to occur in wetlands and non-wetlands.

Facultative Upland:

Usually occurs in non-wetlands, but occasionally found in wetlands.

Site Number & Restoration Status

→ Underwood & Associates 08/08/25 ←

Discussion & Conclusion

Conclusion

Total Vegetation Cover

Richness

Diversity + Composition

Native Cover

Unrestored

Unrestored sites had higher cover at all three sites. Likely cause: density of invasive species & restoration design.

Restored

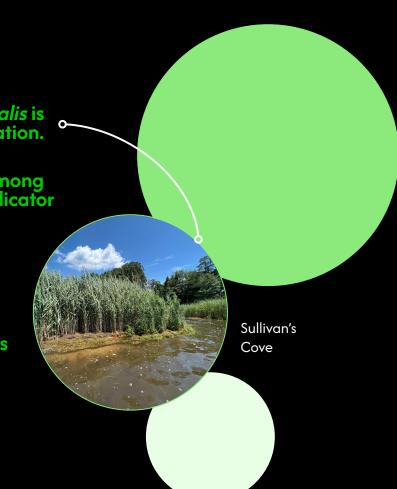
Restored sites had 2-6 times as many observed species as their unrestored partner.

Restored

Both Shannon's and Simpson's Diversity Indices showed higher diversity at restorations through all three paired sites.

Restored

At restored sites, native cover was over 80%. At unrestored sites, non-native cover was over 50%.


Key Takeaways

→ At points with high (>1 mile) fetch on the Severn, *P. australis* is generally the primary species that thrives without restoration.

Higher values were found at restored sites consistently among pairs in terms of richness, diversity, variety of wetland indicator status, and native cover!

Local restoration efforts are effectively supporting and re-establishing native plant biodiversity.

Restored living shorelines are ecologically beneficial! Restoration projects outperformed unrestored sites across multiple metrics.

Future Questions

How do other metrics (biodiversity, soils, macroinvertebrates, etc.) stack up at restored vs. unrestored sites?

How might U&A's Dynamic Living Shoreline method differ in prosperity versus other living shoreline designers/

contractors?

Is there any significant correlation between the increasing age of living shoreline restorations and number of native species present?

Taking water quality measurements → Underwood & Associates 08/08/25 €

Thank you!

I would like to extend my gratitude to my wonderful mentors– **Camille Calure** with Underwood & Associates, and **Nita Settina** with the Center for Ecosystem Recovery. Thank you **Kami**, for always being by my side & being an amazing co-intern. To the rest of the Underwood & Associates team- your advice, aid, and mentorship do not go unnoticed! Thank you!

I appreciate you all for your unwavering support and guidance throughout this entire internship!

Keep in touch with me! vivian.maneval@gmail.com vmaneval@umd.edu www.linkedin.com/in/vivian-maneval